AD-A068 591

NEW JERSEY STATE DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/G 13/2
NATIONAL DAM SAFETY PROGRAM. FURNACE BROOK W. S. DAM NUMBER 2 (--ETC(U)
APR 79 D J LEARY
DACW61-78-C-0124

UNCLASSIFIED

NL

DELAWARE RIVER BASIN FURNACE BROOK WARREN COUNTY NEW JERSEY

FURNACE BROOK W.S.

DAM NO.2 NJ 00137

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

Approved for public release; distribution unlimited

ORIGINAL CONTAINS COLOR PLATER: ALL BE IN BLACK AND W

DEPARTMENT OF THE ARMY

Philadelphia District Corps of Engineers Philadelphia, Pennsylvania

> 79 05 14 April, 1979

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG HUMBER 1. REPORT NUMBER NJ00137 TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Phase I Inspection Report National Dam Safety Program FINAL rept. Furnace Brook W.S. Dam No. 2 PERFORMED ORG. REPORT NUMBER Warren County, N.J. 8. CONTRACT OR GRANT NUMBER(a) 7. AUTHOR(a) DACW61-78-C-#124 Dennis J./ Leary P.E. 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK Langan Engineering Assoc, Inc. 970 Clifton Ave. Clifton, N.J. 07013 11. CONTROLLING OFFICE NAME AND ADDRESS Apri U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets 13. NUMBER OF PAGES Philadelphia, Pennsylvania 19106
14. MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office) 125 18. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) National Dam Safety Program. Furnace Brook W. S. Dam Number 2 (NJ-90137), Delaware River Basin, Furnace Brook, Warren County, New Jersey, Phase I 18. SUPPLEMENTARY NOTES Inspection Reports Copies are obtainable from National Technical Information Service, Springfield, Virginia, 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Spillway Dams Structural Analysis Riprap Visual Inspection Embankments National Dam Safety Act report Furnace Brook W.S. Dam 26. ABSTRACT (Continue on reverse side H reseasesy and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.

410 891

DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT, CORPS OF ENGINEERS CUSTOM HOUSE—2 D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106

NAPEN-D

Honorable Brendan T. Byrne Governor of New Jersey Trenton, NJ 08621

4 MAY 1979

a die

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Furnace Brook W.S. Dam No. 2 in Warren County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Furnace Brook W.S. Dam No. 2 a high hazard potential structure, is judged to be in fair overall condition and the spillway is considered adequate. To insure adequacy of the structure, the following actions, as a minimum, are recommended:

- a. Within six months from the date of approval of this report, the following remedial actions should be completed:
- (1) Place riprap protection at the left portion of the dam along Buckley Avenue and if necessary, at the sides of the auxiliary spillway.
- (2) Repair erosion on the downstream slope and along the spillway discharge channel.
- (3) Completely plug animal burrows in the downstream face of the dam and provide protection against future animal burrowing into the embankment.
- (4) Provide a permanent walkway from the embankment to the top of the principal spillway riser to permit access to the spillway gate operators.
- (5) Remove wood lodged in the sluice gate on the left side of the spillway.
 - b. Within one year from the date of approval of this report, the

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

NAPEN-D Honorable Brendan T. Byrne

following remedial actions should be completed:

- (1) Sags and ruts in the roadway along the crest of the day should be suitably backfilled and adequate road surface material provided at the top of the dam.
- (2) Repair erosion and remove the boulder at the spillway discharge impact basin.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman James J. Courter of the Thirteenth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Safety Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely.

1 Incl As stated JAMES G. TON Colonel, Corps of Engineers District Engineer

Copies furnished: Dirk C. Hofman, P.E., Deputy Director Division of Water Resources H. J. Dept. of Environmental Protection P. O. Bex CHO29 Trenton, HJ 00625

John O'Dové, Acting Chief Bureau of Flood Plain Hanagement Division of Water Resources H. J. Dopt. of Buvironmental Protection P. O. Box CHO29 Trenton, HJ 00625

CCESSION for ATIS DDC NANNOUNCED DISTIFICATION	White Section Buff Section
PY CISTRIBUTION	TOTALITY COMES
0	23

FURNACE BROOK W.S. DAM NO. 2 (NJ00137)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 14 December 1978 and 10 January 1979 by Langan Engineering Associates, Inc. under contract to the State of New Jersey. The state, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, P.L. 92-367.

Furnace Brook W.S. Dam No. 2 a high hazard potential structure, is judged to be in fair overall condition and the spillway is considered adequate. To insure adequacy of the structure, the following actions, as a minimum, are recommended:

- a. Within six months from the date of approval of this report, the following remedial actions should be completed:
- (1) Place riprap protection at the left portion of the dam along Buckley Avenue and if necessary, at the sides of the auxiliary spillway.
- (2) Repair erosion on the downstream slope and along the spillway discharge channel.
- (3) Completely plug animal burrows in the downstream face of the dam and provide protection against future animal burrowing into the embankment.
- (4) Provide a permanent walkway from the embankment to the top of the principal spillway riser to permit access to the spillway gate operators.
- (5) Remove wood lodged in the sluice gate on the left side of the spillway.
- b. Within one year from the date of approval of this report, the following remedial actions should be completed:
 - (1) Sage and ruts in the roadway along the crest of the dam should be suitably backfilled and adequate road surface material provided at the top of the dam.
 - (2) Repair erosion and remove the boulder at the spillway discharge impact basin.

APPROVED:

JAMES G. TON

Colonel, Corps of Engineers

District Engineer

DATE: 4 May 1979

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

NAME OF DAM:

FURNACE BROOK W.S. DAM #2

ID NUMBER:

FED ID No NJ00137

STATE LOCATED:

NEW JERSEY

COUNTY LOCATED:

WARREN

STREAM:

FURNACE BROOK TRIBUTARY TO

RIVER BASIN:

DELAWARE

DATE OF INSPECTION:

DECEMBER 1978

ASSESSMENT OF GENERAL CONDITIONS

Furnace Brook W.S. Dam #2 is 8 years old and in fair overall conditions. There are animal burrows in the downstream slope. Riprap has deteriorated or was not placed during construction in the areas of the auxiliary spillway side slopes and at the left portion of the dam along Buckley Avenue. The crest of the dam has vehicular ruts and sag ponds. The dam can adequately pass the PMF.

We recommend riprap protection be placed at the left portion of the dam along Buckley Avenue and if necessary, at the sides of the auxiliary spillway. This should be done soon. The erosion on the downstream slope and along the spillway discharge channel should be repaired. This should be done soon. Animal burrows in the downstream face of the dam should be completely plugged and protection provided against future animal burrowing into the embankment. This should be done soon. A permanent walkway from embankment to top of the principal spillway riser should be provided to permit access to spillway gate operators. This should be done soon. Wood lodged in the sluice gate on the left side of the spillway should be removed. This should be done soon. Sags and ruts in the roadway along the crest of the dam should be suitably backfilled and adequate road surface material provided at the top of the dam. This should be done in the near future. The erosion should be removed. This should be done in the future.

0

OVERVIEW
FURNACE BROOK W.S. DAM #2
1 DECEMBER 1978

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

NAME OF DAM:

ID NUMBER:

STATE LOCATED:

COUNTY LOCATED:

STREAM:

RIVER BASIN:

DATE OF INSPECTION:

FURNACE BROOK W.S. DAM #2

FED ID No NJ00137

NEW JERSEY

WARREN

FURNACE BROOK TRIBUTARY TO

DELAWARE

DECEMBER 1978

LANGAN ENGINEERING ASSOCIATES, INC.

Consulting Civil Engineers
990 CLIFTON AVENUE
CLIFTON, NEW JERSEY

CONTENTS

NATIONAL DAM SAFETY REPORT

FURNACE BROOK W.S. DAM #2 FED ID NO NJ00137

			PAGE
PREFACE			
SECTION 1	PRO	DJECT INFORMATION	
	1.1 1.2 1.3	General Project Description Pertinent Data	1 1 2
SECTION 2	ENC	GINEERING DATA	
	2.1 2.2 2.3 2.4	Design Construction Operation Evaluation	4 4 5 5
SECTION 3	VISU	JAL INSPECTION	5
SECTION 4	OPE	RATIONAL PROCEDURES	5
SECTION 5	HYI	DRAULIC/HYDROLOGIC	5
SECTION 6	STR	UCTURAL STABILITY	6
SECTION 7		ESSMENT, RECOMMENDATIONS/ MEDIAL MEASURES	
	7.1 7.2	Assessment Recommendations/Remedial Measures	6 7
FIGURES	1.	Regional Vicinity Map	
	2.	Essential Project Features	
	3.	Regional Geologic Features	
APPENDICES	1.	Engineering Data	
	2.	Check List, Visual Inspection	
	3.	Photographs	
	4.	Hydrologic Computations	
	5.	References	

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

SECTION 1 PROJECT INFORMATION

1.1 General

Authority to perform the Phase I Safety Inspection of Furnace Brook W.S. Dam #2 was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 20 November 1978. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the US Army Engineers District, Philadelphia.

The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to safety of Furnace Brook W.S. Dam #2 and appurtenances based upon available data and visual inspection, and, determine any need for emergency measures and conclude if additional studies, investigations and analyses are necessary and warranted. The assessment is made using screening criteria established in Recommended Guidelines for Safety Inspection of Dams prepared by the Department of Army, Office of the Chief of Engineers. It is not the purpose of the inspection report to imply that a dam meeting or failing to meet the screening criteria, is per se, certainly adequate or inadequate.

1.2 Project Description

Furnace Brook W.S. Dam #2 is an 8 year old, 55-ft high, 1680-ft long earthfill dam. It has 3 hor to 1 vert upstream and downstream slopes. The upstream slope is riprapped and the downstream slope is grassed. There is a one to eighteen foot deep cutoff trench along the centerline of the dam and a vertical sand drain below the downstream slope. The dam has a principle spillway at its center and an auxiliary spillway at the right abutment. The principle spillway is a drop inlet structure consisting of a two stage reinforced concrete upstream riser, a 30-in-dia RC water pipe under the dam, and a RC impact basin at the downstream toe. There are three partially screened relief wells and two observation wells in the area of the impact basin. The auxiliary spillway is a 500-ft-wide grassed open channel. It has a negatively sloped entrance, a 50-ft-level reach, a control section, and a positively sloped outlet.

The dam is located in Warren County, New Jersey approximately one mile upstream from Oxford on Furnace Brook. It is at north latitude 40° 47.9' and west longitude 75° 0.8'. A regional vicinity map is given in Fig 1 and essential features of the dam are given in Fig 2.

Furnace Brook W.S. Dam #2 is classified as being "Intermediate" on the basis of its maximum reservoir storage volume of 1440 ac-ft which is less than 50,000 ac-ft, but more than 1000 ac-ft. It is classified as "Intermediate" on the basis of its total height of 55 ft which is more than 40 feet, but less than 100 feet. The dam is therefore, classified as "Intermediate" in size.

In the National Inventory of Dams, Furnace Brook W.S. #2 has been classified as having "High Hazard Potential" on the basis that failure of the dam would cause excessive property damage to residences downstream, and could potentially cause more than a few deaths. Visual inspection of the downstream area shows that breach of the dam could cause damage to residences and be hazardous to people utilizing Buckley Road. Accordingly, It is proposed not to change the Hazard Classification Potential.

The dam is owned by Oxford Township, Warren County, New Jersey.

The purposes of the dam are flood control and recreation.

The dam was designed by the U.S. Department of Agriculture, Soil Conservation Service, 1370 Hamilton Street, P.O. Box 219, Somerset, New Jersey 00873. The principal designer is Mr. C.J. Montana.

1.3 Pertinent Data

a. Drainage Area is 2.87 sq mi

Normal water surface area is 53 acres

b. Discharge at Dam Site

Maximum known flood at dam site: Unknown

Principal spillway capacity at flood pool elevation: 137 cfs

Principal spillway capacity at maximum pool elevation: Approx. 140 cfs

Auxiliary spillway capacity at maximum pool elevation: Approx 14,360 cfs

Total spillway capacity at maximum pool elevation: Approx 14,500 cfs

c. Elevation (ft above MSL)

Top Dam:

El. 591.60 (low point)

El. 593.0 (center of embankment)

El. 588.60

Full flood control pool: El. 586.9

Recreation pool: El. 579.00

Spillway crest: Principal @ El. 581.16, Auxiliary @ El. 586.9

D/S @ El. 538, U/S El. 543.5 Streambed at centerline of dam: Approx. 538.5 at time of inspection Maximum tailwater: Reservoir d. 3200 ft Length of maximum pool: 2550 ft Length of recreation pool: 3000 ft Length of flood control pool: Storage (acre-feet) 640 AF Recreation pool: 1120 AF Flood control pool: 1240 AF Design high water: 1440 AF Top of dam: Reservoir Surface (acres) Top dam: 75.5 Ac. 72.0 Ac. Design high water pool: Flood-control pool: 68 Ac. 53 Ac. Recreation pool: 68 Ac. Auxiliary spillway crest: Dam Earthfill Type: 1680 ft Length:

Height:

Zoning:

Top width:

Side slopes:

55 ft (Maximum)

None observed

U/S and D/S 3 hor: 1 vert

18 ft +

Impervious core:

None observed

Cutoff:

Cutoff trench along centerline

Grout Curtain:

None observed

h. Spillway

Type:

Drop inlet consisting of two stage riser

Length of weir:

15 ft effective

Crest elevation:

El. 581.16

Invert of low stage orifice:

El. 578.91

Gates:

None observed

U/S channel:

None observed

D/S channel:

None observed

. Auxiliary Spillway

Type:

Grassed open channel with a negatively sloped entrance, a 50-ft level reached

a positively sloped outlet.

Length of reach:

500 feet

Crest elevation:

El. 586.9

i. Regulating Outlets

18-in-dia gate opening at base of dam and drop inlet spillway leading to 30-in-dia RC pipe. Gate operator and spillway located at approximately middle of dam and upstream slope.

SECTION 2 ENGINEERING DATA

2.1 Design

Furnace Brook W.S. Dam #2 was designed as a multi-purpose dam by the U.S. Department of Agriculture Soil Conservation Service between 1968 and 1970. Available documents include a relatively comprehensive record of the results of field and laboratory investigations, design calculations, and conclusions. A summary of the Engineering Data is given in Appendix 1.

2.2 Construction

The dam was constructed by K.P. & B. Construction Company of Belvidere, N.J. between September 1970 and December 1971. Our review of the construction records indicate the principal dam designer visited the work about once a month, problems encountered during construction were resolved, and Mr. Robert L. Hardman, acting Chief Engineer, N.J. DEP Div. of Water Resources, certified the dam was built according to plans and specifications.

2.3 Operation

Operation of the dam is the responsibility of the Township of Oxford, New Jersey under agreement with the Soil Conservation Service. A copy of this agreement is included in Appendix 1.

2.4 Evaluation

The availability, adequacy and validity of the information concerning the design and construction of the dam are satisfactory.

SECTION 3 VISUAL INSPECTION

Our visual inspection of Furnace Brook W.S. Dam #2 was made in the company of Messrs. L. Holt, D. Smart, and B. Irwin of the Soil Conservation Service and Mr. Coppersmith of C. Douglas Cherry & Assoc., Engineers for the Township of Oxford.

There is no riprap on the side slopes of the auxiliary spillway. Rutting and sag ponds have occurred along the crest of the dam. Riprap has deteriorated or was not completed along the left upstream portion of the dam along Buckley Avenue. There are animal burrow holes in the downstream slope and drainage ruts along the downstream toe of the dam. There is approx. 1.5 ft deep erosion and a large boulder against the left side of the concrete of the impact basin. Access of the top of the spillway riser is by way of a wooden plank from the embankment. There is a piece of wood in the gate at the left side of the spillway. The slopes of the spillway discharge channel has eroded 1 to 2 ft at two locations.

SECTION 4 OPERATIONAL PROCEDURES

Operational procedures have been established by the Soil Conservation Service and the Township of Oxford is responsible for following these procedures. The operation and maintenance agreement between the SCS and the Township is given in Appendix 1.

SECTION 5 HYDRAULICS/HYDROLOGIC

Based on a review on the hydrologic design data supplied by the U.S. Department of Agriculture, Soil Conservation Service, the dam has been designed in accordance with present day criteria and is considered satisfactory.

The dam has been designed on the basis of a PMF Detention from the freeboard hydrograph rainfall from National Engineering Handbook, Section 4, ES 1020 Sh. 5 of 5. This flood is equivalent to 25.3 inches of rainfall and has a peak inflow of 15888 cfs.

The total capacity of the spillway at maximum pool is 14,500 cfs which is slightly less than SDF.

Flood routing for the PMF (done by the SCS) indicates the dam will not overtop. The dam can adequately pass the PMF with a routed peak outflow of 14363 cfs.

Design drawdown calculations showed that more than 80% of the flood storage can be removed within 10 days. Our calculations indicate the lake level could be lowered 19 ft from normal pool in approximately 9 days.

SECTION 6 STRUCTURAL STABILITY

Based upon our visual observations and review of the design and construction data, it is our opinion Furnace Brook W.S. Dam #2 is structurally stable under static loading. Calculated minimum factors of safety of upstream slope under drawdown condition and of downstream slope under steady seepage condition are reported to be 1.44 and 1.83 respectively. These analyses were made using the Swedish circle method and the results are considered conservative.

There are no available operating records. Past construction changes consisted of repairs to correct elongation of the 30-in-dia principal spillway pipe below the dam, and, repair of erosion of the toe of the eastern embankment and improvements of the gutter on the downstream slope of the dam.

Furnace Brook W.S. Dam #2 is located in Seismic Zone 1 of the Seismic Zone Map of Contiguous States. The degree of stability of the dam and appurtenances are assumed to be within conventional safety margins and to present no hazard from earthquakes. If, however, the Seismic Zone rating is seriously increased in the future, or data becomes available to indicate it may be increased, further study with respect to seismic stability may be necessary.

SECTION 7 ASSESSMENT, RECOMMENDATION/REMEDIAL MEASURES

7.1 Assessment

Furnace brook W.S. Dam#2 is 8 years old and in fair overall condition. There are animal burrows in the downstream slope. Riprap has deteriorated or was not placed during construction in the areas of the auxiliary spillway side slopes and at the left portion of the dam along Buckley Avenue. The crest of the dam has vehicular ruts and sag ponds. The dam can adequately pass the PMF.

7.2 Recommendations/Remedial Measures

0

We recommend the following remedial measures:

- 1. Place riprap protection at the left portion of the dam along Buckley Avenue and if necessary, at the sides of the auxiliary spillway. This should be done soon.
- 2. Repair erosion on downstream slope and along spillway discharge channel. This should be done soon.
- Completely plug animal burrows in the downstream face of the dam and provide protection against future animal burrowing into the embankment. This should be done soon.
- 4. Provide a permanent walkway from embankment to top of principal spillway riser to permit access to spillway gate operators. This should be done soon.
- Remove wood lodged in sluice gate on left side of spillway. This should be done soon.
- 6. Sags and ruts in the roadway along the crest of the dam should be suitably backfilled and adequate road surface material provided at the top of the dam. This should be done in the near future.
- 7. Repair erosion and remove boulder at the spillway discharge impact basin. This should be done in the future.

1

REGIONAL VICINITY MAP FURNACE BROOK WS. DAM#2

SECTION A-A

PLAN SCALE: 1": 200"

EL. 543.5

O' F PERFORATED

CORRUG

LAE .

REINFORCED CONCRETE IMPACT

BASIN

SCALE: 1"-8"

6

CORRUGATED METAL GUTTER

EL. 540.92)

AUXILIARY SPILLWAY

SECTION B-B

SCALE : HORIZ: 1"-100"

NOTE:

THE ELEVATIONS SHOW SURVEYOR'S TRANSIT AND FURNACE BROOK WATER SHED BY THE U.S. DEPT. OF AGRICU A SELECTED BENCH MARK ELPOWER POLE* 10 AS INDICATE ARE APPROXIMATE. INFORMA AND WATER LEVEL ARE INFEMENTIONED DWGS.

- AUXILIARY SPILLWAY

NOTE:

THE ELEVATIONS SHOWN WERE OBTAINED USING A SURVEYOR'S TRANSIT AND LEVEL AND THE DWGS. ENTITLED "FURNACE BROOK WATER SHED MULTIPLE PURPOSE DAM NO.2" BY THE U.S. DEPT. OF AGRICULTURE SOIL CONSERVATION SERVICE. A SELECTED BENCH MARK ELEVATION OF 581.05 WAS USED FROM POWER POLE "18 AS INDICATED ON SAID DWGS. THESE ELEVATIONS ARE APPROXIMATE. INFORMATION SHOWN BELOW GROUND SURFACE AND WATER LEVEL ARE INFERRED ON THE BASIS OF THE ABOVE MENTIONED DWGS.

DATE DESCRIPTION
REVISIONS

PROJECT

PHASE I

NEW JERSEY DAMS

DRAWING TITLE

FURNACE BROOM

FEBRUARY 19 FED. I.D NO. NJOOIS

DATE | FEB 1979 | SCALE AS NOTED |

APPENDIX 1

ENGINEERING DATA

FURNACE BROOK W.S. DAM #2

- 1. DESIGN REPORT, 6 pages
- 2. SOIL MECHANICS LABORATORY REPORT, 22 pages
- 3. LOGS OF DRILL HOLES AND TEST PITS, 18 pages
- 4. DETAILED GEOLOGIC INVESTIGATION OF FURNACE BROOK SITE 2, 11 pages
- 5. OPERATION AND MAINTENANCE AGREEMENT FOR STRUCTURAL MEASURES, 8 pages

DESIGN REPORT

NJ-08-2013-2

Multiple Purpose Dam No. 2
Furnace Brook Watershed
Warren County
New Jersey

Location:

This multiple purpose dam of the Furnace Brook Watershed Project is located in Warren County approximately one mile upstream from Oxford on Furnace Brook. The site has a drainage area of 2.87 square miles and controls 61.4 percent of the drainage area contributing to the damage reach in Oxford.

Hydrology, Work Plan Stage:

No principal spillway routings were made through Furnace Brook Site 2 in the planning stage.

The 100-year 6, 24, 48, 72 and 96 hour duration hydrographs were routed through the now deleted Site 1 which was approximately 2600 feet downstream from the present site. The routings were performed by use of Soil Conservation Service Technical Release 20, Computer Program for Project Formulation. The highest elevation obtained from the above five routings was then established as the emergency spillway crest for Site 11. This elevation, 554.8 feet, and the associated flood storage, 635 acre feet, was obtained from the 100-year 48 hr. storm.

To determine the flood storage required in Site 2 a ratio of its drainage area; 2.87 sq. miles, to that of Site 1, 3.74 sq. miles, was multiplied by the storage required in Site 1 to give 487 acre ft. This resulted in an emergency spillway crest elevation of 586.9 ft.

The emergency spillway and freeboard designs were determined from hydrographs produced by rainfalls taken from hydrologic maps based on U.S. Weather Bureau Technical Paper No. 40. The SCS Technical Release 35 was used for routing these storms through Site 2.

Hydrology, Design Stage:

The first routings made were those in accordance with the Soil Conservation Service National Engineering Handbook, Section 4, Chapter 21, Design Hydrographs. The resulting emergency spillway crest elevation of 587.99 feet is approximately 1.0 foot higher than that established in the work plan.

In accordance with Engineering Memorandum No. 67, the procedure used in the planning stage was then followed.

REFERENCE:

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING MO. NJ-08-2013-2

SHEET_1_OF___

ISPA SCS-MYATTSVILLE, NR. 1867

DESIGN REPORT

Therefore, following the procedure used in the work plan, the 100-year frequency 6, 24, 48 and 72 hour duration storms were routed through Site 2. The curve number and time of concentration used were those established for Site 2. The inches of rainfall associated with each storm checked exactly with those used in the planning stage when routing through Site 1. Again the 100-year 48 hour storm gave the maximum required flood storage, 400 acre feet. This is 87 acre feet less than that established in the planning stage.

Since current criteria requires that more storage be provided than that established in the work plan, it was felt advisable to provide at least the storage required in the work plan rather than reduce it by 87 acre feet. The emergency spillway crest elevation was therefore set at 586.9 feet.

The drawdown calculation showed that more than 80% of the flood storage will be removed within 10 days. Therefore, the emergency and freeboard hydrographs were routed from the normal pool elevation of 579.0. The elevations obtained were in close agreement with those established in the work plan.

All routings were performed by the Automatic Data Processing Section in Upper Darby, Pennsylvania, in accordance with TSC-Technical Note-MGT-UD3.

Hydraulics:

The principal spillway is a drop inlet structure consisting of a two stage reinforced concrete riser, 30 inch diameter reinforced concrete water pipe, and reinforced concrete impact basin. The riser is of a standard design developed by the Agricultural Research Service at the Saint Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota. The impact basin is also of a standard design adapted from that developed by the Bureau of Reclamation, U.S. Department of Interior. This type of energy dissipator functions almost independently of tail water elevation.

The auxiliary spillway is an open channel excavated in the right (South) abutment. It consists of a negatively sloped entrance, a level reach of 50 feet, a control section, and a positively sloped outlet. The bottom width is 500 feet. The dike being built along its north side will be ripraped.

Subsurface Investigation:

The subsurface investigation was conducted by the staff geologist of the Soil Conservation Service in coordination with the design engineer. Test pits and drill holes were used in the investigation, Laboratory

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO. NJ-08-2013-2

SHEET 2 OF ____

DESIGN REPORT

tests were conducted and the test report prepared by the Soil Mechanics Laboratory of the Soil Conservation Service in Lincoln, Nebraska. For a detailed report of the site investigation, interpretations, conclusions, and laboratory results see the section headed Geology and Soils.

Embankment:

The earth fill embankment consists of material classified as CL-ML. The side slopes shall be 3:1 both upstream and down with a ripraped berm on the upstream side. The downstream face shall be covered with rock obtained from on site material. A vertical embankment drain will be constructed to provide for drainage in the embankment. Relief wells are being placed at the downstream toe to relieve excess pressure.

PREPARED BY: C. Montana
Carmelo J. Montana
Design Engineer

CONCURRED BY: W Kenneth S. Werkman State Conservation Engineer

REFERENCE: '

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO. NJ-08-2013-2 SHEET 3 OF

DATE.

U.S. DEPARTMENT OF AGRICULTURE . SOIL CONSERVATION SERVICE DESIGN REPORT SUMMARY 1. Wotershed Doto A. Structure Closs B. Droinage Area C. Time of Concentration - Tc C. I.2 Hrs. D. Hydrologic Curve Number - Cn I. Moisture Condition II G. Principal Spillway A. Conduit C. Length			
1. Wotershed Data C		U.S. DEPARTMENT OF AGRICULTURE = SOIL CONSERVATION SERVICE	CE -
A Structure Closs	-1:	DESIGN REPORT SUMMARY	
B. Drainage Area 1837 Ac	00		
C. Time of Concentration - Tc	1.0		Ac.
II		C. Time of Concentration - To 1.2	
I. Principal Spillway A Conduit 30 In.		D. Hydrologic Curve Number - C _n 1. Moisture Condition II 69	
A Conduit 1. Inside Did. 2. Length 2. Length 2. Length 2. Riser 1. Inside Dimensions 2. S x 7.5 Ft. 2. Height (Floor to Crest) 39.25 Ft. C. Weir Length D. Orifice Dimensions 1.5 x 2.92 In. E. Reservoir Drain Size 18 In. F. Type of Energy Dissipater Impact Basin III Emergency Spillway A Width B. Side Slopes C. Length of Level Section D. Exit Slope C. Length of Level Section D. E. Max. Velocity in Exit Section @ D. H. W. 5.13 Ft/Fit F. Duration of Flow thru Emer. Spillway @ D. H. W. G. Frequency of Use Once every 190 years IX Earth Fill A Height B. Volume 193,800 C. Y. FILL PLACEMENT			
1. Inside Did. 230 In. 2. Length		II. Principal Spillway	
2. Length 232 Ft. B. Riser 1. Inside Dimensions 2.5 x 7.5 Ft. 2. Height (Floor to Crest) 39.25 Ft. C. Weir Length 15.0 Ft. D. Orifice Dimensions 1.5 x 2.92 In. E. Reservoir Drain Size 18 In. F. Type of Energy Dissipater Impact Basin III Emergency Spillway 500 Ft. B. Side Slopes 311, 3:1 C. Length of Level Section 50 Ft. E. Max. Velocity in Exit Section @ D. H. W. 5.3 Ft. F. Duration of Flow thru Emer. Spillway @ D. H. W. 5 Hrs. F. Duration of Flow thru Emer. Spillway @ D. H. W. 5 Hrs. G. Frequency of Use 00ce every 100 years IX Earth Fill 53.0 Ft. B. Volume 193,800 C. Y. C. Compaction A 7			
1. Inside Dimensions 2.5 x 7.5 Ft 39.25 Ft 2. Height (Floor to Crest) 39.25 Ft 1.		2. Length 232	
C. Weir Length 1.5 x 2:92 In E. Reservoir Orain Size 18 In F. Type of Energy Dissipater Impact Bas in III. Emergency Spillway 500 Ft B. Side Slopes 3:11, 3:1 C. Length of Level Section 50 Ft D. Exit Slope 1033 Ft F. Duration of Flow thru Emer. Spillway D.H.W. 5.3 Ft F. Duration of Flow thru Emer. Spillway D.H.W. 5 Hrs. G. Frequency of Use 00ce every 100 years IV. Earth Fill 53.0 Ft B. Volume 193,800 C. Y. C. Compaction A 7		B. Riser	5 F.
D. Orifice Dimensions 1.5 x 2.992 In. E. Reservoir Oroin Size 18 In. F. Type of Energy Dissipater Impact Bas in III. Emergency Spillway 500 Ft. A. Width 500 Ft. B. Side Slopes 3:1, 3:1 C. Length of Level Section 50 Ft. D. Exit Slope		2. Height (Floor to Crest) 39.25	Ft.
E. Reservoir Drain Size		C. Weir Length D. Orifice Dimensions 15.0	
III Emergency Spillway A. Width B. Side Slopes C. Length of Level Section D. Exit Slope Ft. F. Duration of Flow thru Emer. Spillway @ D.H.W. G. Frequency of Use Once every 100 years IVE Earth Fill B. Volume C. Compaction C. Compaction File Start Start Section Ft. Fl. Fl. Fl. Fl. Fl. Fl. Fl. Fl. Fl. Fl		E. Reservoir Drain Size	· In.
III Emergency Spillway A. Width B. Side Slopes C. Length of Level Section D. Exit Slope I. D. Exit Slope E. Max. Velocity in Exit Section @ D. H. W. F. Duration of Flow thru Emer. Spillway @ D. H. W. G. Frequency of Use Once every 100 years IX Earth Fill A. Height B. Volume C. Compaction C. Compaction Fill Placement Foot Drawn Fill Placement		F. Type of Energy Dissipater	Basin .
C. Length of Level Section 50 F1. D. Exit Slope		III. Emergency Spillway	_
D. Exit Slope E. Max. Velocity in Exit Section @ D. H. W. 5.3 Fi/sec F. Duration of Flow thru Emer. Spillway @ D. H. W. 5 G. Frequency of Use Once every 100 years IVEarth Fill A. Height B. Volume C. Compaction Fill Placement Fill Placement		A. Width 500 B. Side Slopes 3:1. 3	Ft.
E. Max. Velocity in Exit Section (p. D.H. W. 5.3 M/sec. — F. Duration of Flow thru Emer. Spillway (p. D.H. W. 5.4 Hrs. — G. Frequency of Use Once every 100 years IV Earth Fill B. Volume 193.800 C, Y. C. Compaction A Fill Placement		C. Length of Level Section 50	_ F1.
F. Duration of Flow thru Emer. Spillway @ D.H.W. 5 G. Frequency of Use Once every 100 years IX Earth Fill 53.0 F1 B. Volume 193.800 C, Y. C. Compaction A FILL PLACEMENT	7	D. Exit Slope	- Ft/Sec -
A. Height 53.0 Ft. B. Volume 193.800 C, Y. C. Compaction A 7		F. Duration of Flow thru Emer. Spillway @ D.H.W5	Hrs.
Earth Fill A Height B. Volume 193,800 C. Compaction A 7 Fill PLACEMENT			_
C. Compaction A Poak Poak Play 573.*(Cost) Poak Play Fill Placement			c.
Elav. 593. (Const) Posit Fill Placement		B. Volume 193.800	
DRAUQ.			-!
DRAUQ.			
DRAUQ.			
DRAUQ.	7.57		• •
DPRION PROPERTY OF THE PLACEMENT		The second of th	
DPRION PROPERTY OF THE PLACEMENT		Elev. 593. (Const)	
O' FILL PLACEMENT		Poek	
O' FILL PLACEMENT		3	
		Draun ₂₋	•
		A B	
	i.e.		
	To		
	U	FUL DI ACEMENT	
NJ-08-2013-2	1,272		
DF-3 NJ-08-2013-2	18 M. A.	the production of the state of	
The state of the s	DF-3	NJ-08-201	3-2

SHEET 5

LOCATION MAP DRAWING NO. NJ-08-2013-2 REFERENCE: U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SHEET 6 OF

DATE.

UNITED STATES DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE - Soil Mechanics Laboratory

800 "J" Street, Lincoln, Nebraska 68508

SUBJECT: ENG 22-5, New Jersey WP-08, Furnace Brook

Site No. 2 (Warren County)

TO: K. S. Werkman, State Conservation Engineer SCS, Somerset, New Jersey 08873

ATTACHMENTS

1. Form SCS-354, Soil Mechanics Laboratory Data, 2 sheets.

2. Form SCS-128, Consolidation Test Data, 1 sheet.

3. Form SCS-127, Soil Permeability, 2 sheets.

4. Form SCS-355A & B, Triaxial Shear Test Data, 2 sheets.

Form SCS-352, Compaction and Penetration Resistance, 2 sheets.
 Form SCS-523, Foundation Permeability - Summary of Field Test Data, 6 sheets.

DATE: December 19, 1969

7. Form SCS-357, Summary - Slope Stability Analysis, 2 sheets. 8. Form SCS-130, Drain Materials, 1 sheet.

DISCUSSION

FOUNDATION

- A. Bedrock. The bedrock at this site is granitoid gneiss. It was encountered on the left abutment at a depth of 36.5 feet in DH-2 and at a depth of 28 feet in DH-1. It was not encountered on any of the other borings on the site and the test holes penetrated to depths of about 75 feet in the bottom of the valley and to depths of about 72 feet on the right abutment.
- B. Soil Classification. The only samples submitted from the foundation were obtained from the 2 to 4-foot depth, and they represent the surface glacial till and the alluvium. The samples submitted contained from 20 to 55 percent fines. Atterberg limit tests were not made on these samples, but based on the Atterberg limits of the borrow samples, it appears that the samples submitted from the drain line will fall within the SM and ML classification.

The foundation materials at this site are described in the geology report, and the stratigraphy is very well outlined on the profiles and geologic section of Form SCS-316C.

The foundation materials as outlined consist of glacial till, lacustrine sediments, interglacial fluvial materials, and older glacial till overlying bedrock. The material at the surface is essential glacial till and alluvium although the interglacial sandy material is exposed in some areas. The interglacial alluvium occurs in the old channel sections K. S. Werkman
Subj: ENG 22-5, New Jersey WP-08, Furnace Brook, Site No. 2

both above and below the lacustrine deposit. The old channel sections are irregular and meander through the foundation. The location of the interglacial channel sections is well outlined in the investigational report.

Foundation samples were not submitted for shear strength and consolidation testing. The investigational data show high blow counts in most materials.

C. Permeability. A number of field permeability tests were made and the data are recorded in the geology report. These data are summarized by soil material on the attached Forms SCS-523.

EMBANKMENT

- A. Soil Classification. Two samples were submitted to represent the embankment material. These samples represent glacial till. They contain about 10 percent gravel and slightly over 50 percent fines. One of the samples has an LL of 27 and a PI of 7. It is classed as CL-ML. The other sample has an LL of 31 and a PI of 11, and it is classed as CL.
- B. Compacted Density. Standard Proctor compaction tests were made on the minus No. 4 fraction of each of the samples. The maximum dry density obtained was 117.5 pcf on 70W689 and 118.0 pcf on 70W690.
- C. Shear Strength. The two samples are quite similar, so a consolidated undrained triaxial shear test was made on Sample 70W689 to represent these materials. The test was made at 95 percent of standard Proctor density, and the test specimens were back pressured to obtain saturation. Pore pressure was measured during the undrained shear test. The total stress shear strength parameters obtained are $\emptyset = 20^{\circ}$, c = 425 psf; and the effective stress shear strength parameters are $\overline{\emptyset} = 30.5^{\circ}$, $\overline{c} = 300$ psf.
- D. Consolidation. A consolidation test was made on Sample 70W689. The test specimen was compacted to 95 percent of Proctor density by kneading compaction. The data obtained are shown on the attached Form SCS-128. The data indicate that this material will consolidate about 0.05 ft/ft at the base of the embankment.
- E. Permeability. A permeability test was made on Sample 70W689 at 95 percent of standard Proctor density. The test was made in an 8-inch diameter permeameter under loads of 500 psf and 2,000 psf. The permeability rate measured was 0.003 fpd under both loads. The data are shown on the attached Form SCS-127.

In addition to the permeability test outlined above, permeability measurements were made on the consolidation test specimen under loads of 2,000 psf, 4,000 psf, 8,000 psf, and 16,000 psf. The rates obtained are shown on the attached Form SCS-127, sheet 2 of 2.

K. S. Werkman Subj: ENG 22-5, New Jersey WP-08, Furnace Brook, Site No. 2

SLOPE STABILITY

A stability analysis was made with a Swedish circle method of analysis. The foundation materials have high blow counts, and they are described as dense. No samples of the foundation were submitted for testing, however, and for this analysis it was considered to be sufficiently strong so that the trial failure arcs were limited to the embankment. The analysis for the upstream slope considered drawdown from emergency spillway elevation, and the analysis for the downstream slope considered the steady seepage condition with a phreatic line from emergency spillway elevation to a drain at the c/b = 0.6 point.

With the shear strength values of $\emptyset = 20^{\circ}$, c = 425 psf representing the embankment material, the factor of safety for the upstream slope was 1.44 and the factor of safety for the downstream slope was 1.83.

CONCLUSIONS AND RECOMMENDATIONS

The following recommendations concerning cutoff and drainage are a result of discussion between representatives from the E&WP Unit, the State Design Engineer, and myself at the E&WP Unit office on December 9, 1969.

A. Cutoff. We concur with the cutoff trench depths suggested by the State Design Engineer, as shown on Form SCS-316E of the investigation report. At the depths proposed the trench will bottom in either glacial till or in lacustrine material. When the trench is opened in the left abutment it will be necessary to determine whether the boulders encountered in the till during the site investigation occur in pockets or in lenses. If they occur in lenses, it may be necessary to extend the cutoff.

A trench width of H - d, as planned, should be sufficient; and based upon the gradation of the alluvial samples submitted, it does not appear that a transition zone will be required between the glacial till trench backfill and the alluvium. This will require more evaluation at the time the trench is opened, however, to make certain that the trench backfill will not pipe into coarse-grained alluvium if it exists.

The till represented by the borrow samples is suitable for trench backfill, and we recommend that it be placed at a minimum of 95 percent of Proctor density with the control based on the minus No. 4 fraction. A placement moisture content slightly wet of optimum is suggested.

- B. Drainage. The following measures are recommended to control seepage:
 - 1. Install a foundation trench drain at about c/b = 0.6 to provide a safe outlet for foundation and embankment seepage. We suggest that the trench penetrate the foundation a minimum of 5 or 6 feet. If more permeable zones occur below the 5 or 6-foot depth in the alluvium, we suggest that the trench be deepended to outlet these zones. This may also be necessary on the abutments if the interglacial fluvial materials are encountered in the drain trench.

K. S. Werkman

Subj: ENG 22-5, New Jersey WP-08, Furnace Brook, Site No. 2

We concur with the proposal to carry the foundation drain up the abutments to normal pool elevation.

The range in gradation of the foundation materials is quite wide, and there is a good possibility that a wider range occurs than shown on the attached Form SCS-130; therefore, we suggest that a double element filter be installed with gradations like those shown on the attached Form SCS-130.

More positive control of the phreatic line might be obtained by utilizing some of the sandy material from an upstream location in a portion of the downstream section than by relying on the permeability of the alluvium and the foundation drain to control the phreatic line in the embankment.

2. It was concluded on the basis of the investigational data and from approximations using the blanket-aquifer equations that relief of the interglacial alluvium underlying the lacustrine material is required. The interglacial alluvium is stratified, and the more permeable zones occur at depths greater than can be handled with the trench drain; therefore, relief wells are necessary. It was the consensus of the group during the discussion on this site that three relief wells should be installed at the downstream toe. The approximate location suggested is in the vicinity of DH-302 and 50 feet on either side of DH-302. It is also suggested that observation wells be installed on both sides of the relief wells. The wells should extend either to the underlying glacial till or to the most pervious stratum in the interglacial fluvial material if this can be determined.

The interglacial fluvial deposit is expected to be stratified, and the gradation may vary considerably within relatively short distances; therefore, it will be necessary to determine the gradation of all of the material at the well location and design the filter pack on the basis of the materials encountered.

3. We concur with the proposal to place a compacted soil blanket over the exposed sandy deposits upstream from the embankment on the left abutment.

On the basis of the present data, it does not appear that the seeps on the left abutment upstream from the dam will cause any problems.

C. Principal Spillway. High-blow-count material occurs at the proposed location, and it is reported that foundation consolidation is expected to be very low.

5

K. S. Werkman

Subj: ENG 22-5, New Jersey WP-08, Furnace Brook, Site No. 2

D. Embankment Design.

- 1. Placement of Material. Materials represented by the two borrow samples submitted make up the majority of the fill. We suggest that this material be placed at a minimum of 95 percent of standard Proctor optimum with the control based on the minus No. 4 fraction. We suggest a placement moisture content slightly wet of optimum to obtain as much flexibility in the fill as possible.
- 2. Slopes. The data indicate that the proposed 3:1 slopes have acceptable factors of safety.
- Settlement. An overfill allowance of 1.25 feet is suggested to compensate for residual settlement in the fill and foundation.

Prepared by:

Lorn P. Dunnigan

Attachments

cc:

K. S. Werkman (2)

Neil F. Bogner, Upper Darby, Pa.

įį. SALIS CLASS-= MIR. 1 ٠<u>2</u>: 12/17/29 30/32 39 45 55 62 65 70 73 80 92 100 13 21 32 36 40 57 66 76 81 84 86 88 92 95/100 100 9 12 17 17 20 4268 8385 86 86 84 819 SW- 9 13 15 20 20 12 30 40 59 74 81 8690 93 100 \$ 電 18 25 36 45 45 48 58 65 75 82 88 91 92 100 Storage, and Recreation sate asternation traises as recent fines or per 100 U.s. DEPARTMENT OF ACHULITURE PLOOD Water Retarding, Sediment 13 21 34 50 55 60 73 81 90 96 99 000 1237 केंद्र C 9 2 6 - N CLASS-FIGATOR N. 8 8 8 2-4. MF PT 8 2-4. 2-4. 2-4. 2-4. 2-4. Q 4 0 0 D-303 Trench Drain, 70' R D-602 Trench Drain, 95' R & Dam 13+00 D-601 Trench Drain, 70' R 6 Dam 11+90 0-604 Trench Drain, 75' R Trench Drain, 30' R ² Dem 9+35 Trench Drain, & Dam HT. = 21.5' 17+00 T.'!! Furnace Brook Glacia! Till 630 121 Till Marya Allonom NEW JERSEY Gloria 3/2013/ D-12 2-0 69/9016 989 68 MOL 899 683 189 687

SOIL PECHANIC LABORATORY DAT SPECIAL TESTS 2.147 J. 23.5 200 2,75 2.78 .. -3 27 7 AL DRY DENS ITY < NO. 4 11.5 13.5 PRY PENSITY - NO. 4 2) 11820 15.00 BOISTUPE - DERSITY
RELATIONSHIPS
BE STANDARD
DODG'TED .. 141 ¥: ÷ . SALTS & GASS-11 55 64 70 77 85 89 93 94 96 97 99 100 31 11 ATTENERS 2-10, 50 17 27 41 50 51 53 63 70 78 86 91 94 96 97 98 100 14 23 3241 43 46 58 67 7887 91 94 97 100 CRAIS SIZE DISTRIBUTION EXPRESSED AS PERCRAT FINER BY DRY WEIGHT U. S. DEPARTMENT OF AGRICULTURE BOIL CONSERVATION SERVICE 20 29 43 51 52 25 8 SASSE 2-4. 2-8, Aux. Spillway, 70' R L. Bag Aux. Spillway, 630' R L. Bag D-605 Trench Drain, 60' R Site: Furnace Brook Glacial Till Glocial Till Glocial Till NEW JERSEY 1 9 688 36 H TOW 689

ROJECT						,													SAMPL								,		
HELD SAN	PLE NO.	UCE		DEP	TH A		VO.	2_	M	GEO	LOGIC	ORIGI	N						MX.	SPW.	Y 7	OR	9:)	DEV	المكرة	1	5		_
	4)'-/	0.0	2'					G	110	OVED	1	I	11	_											
YPE OF S												A	PPR	OVED	BY									0	ATE				0
Com						4	KC.	مل	N_			上	_		_		_	_	0				-		1.		13	-6	1
CLASS	FICAT	ION _	CL	·ML								_							ATIO										
G. 2.	7.5	_	LL		27		_	P	1_	7		_		Ju	, 4	ra	/ = 4		., .)/a/	,								
INITIA	DEN	SITY	74	1.7	89	01	cc		111.	700	+		1																
INITIA										•																			
				_																									
COMPR	ESSIO	N IND	EX,	C _C .			:2		=				上					_											_
0	u								٥									K	,									00	
		H	F	F	H	H	Ш	Ш		-1	-	Ŧ	Ŧ	\mathbf{H}	${\mathbb H}$	H	Ш	\blacksquare		+	T	H	+	Π	Π	Ш	Ш	7	
			1:	#	H	#					$\overline{\cdot}$	+	丰	H	#	H	\mathbf{H}	Π		-	+	H	7	\mathbf{H}	H	\mathbf{H}	₩	1	
0.54		井	\pm	#	Ш	#	#					#	#	H	#	H	##	##		+	#	H	#	#	H	#	##	12	
				#	H	2	Ш		7			#	#	H	#	Щ		##		#	+	H	#	#	\parallel	#	##	1	
					Щ	⑪	11	Ш		d		士	+	廿	#	Ш	Ш	Ш			+	\Box	\pm	井	Ш	##	Ш	1	
0.52			± 1		H	± 1	HH	1	X	1	\Box	1	\pm	廿	廿	Ш	Ш	#					1	廿	Ш	111	Ш	10	
			+	-	\mathbf{H}	\mathbf{H}	Ш	Ш		7	H	+	+	H	+	\mathbb{H}	Ш	+ + +		-			+	$\pm \pm$	\mathbf{H}	Ш	Ш		
0.50			H		\mathbf{H}	Π	H	III.		-	8	M-	\mp	H	\mathbf{H}	H	1	₩		+	+	H	+	#	Ш	#	Ш	a	
2.30		H	\mp		H	\mp	Ш	Ш		-	-	X	1	H	\overline{H}	H	₩	\blacksquare		A	+	H	+	\mathbf{H}	\mathbb{H}	H	HH	10	
	-		Ħ	#	H	#	##	Ш			1	#	Z	H	Π	П	Ш	111		4	T	H	7	Π	H	#	Ш	1	
0.48			\Box		Ш	#	##	Ш				丰	#	10	井	H	111	111	_	-	+	H	+	#	111	#	Щ	6	
			\pm		Ш	#	##	Ш		1	=	丰	#	Ħ	X	Ш	IM	#	_	1	#	Ħ	+	#	Ш	441	Щ	1	
			\pm		Ш	#	Ш	Ш				士	#	廿	‡	A	Ш	#		1	#	Ħ	#	#	Щ	##	Щ	1	
0.46						\pm	Ш	Ш				士	士	1	11	田	Ш	Ш			士	日	1	廿	Ш	##	Ш	4	
			+	+	H	+	₩	Ш	_	-	-	\pm	Ł	任	\pm	Ш	18	#		+	\pm	Н	\pm	廿	Ш	Ш	Ш	1	
0.44					\mathbf{H}	Π	III	Ш		-		7	\pm	H	++	\mathbb{H}	Ш	Æ			+		\pm	$\pm \pm$	Ш	#	Ш	,	
- 77			H	\mp	H	#	#			1		\mp	Ŧ	H	#	H	₩	₩	+	+	+	H	+	H	HH	#	₩	-	
			H		H	#	Щ	114			=	干	丰	Ħ	#	H	Щ	Щ		1	1	H	+	Π	H	\mathbf{H}	₩	1	
0.42			13	主	14	71	Ш	Ш		二	二	土	土	旦	旦	世	Ш	Ш		70	1		1	Щ	Щ	Щ	Щ]	
			+	+	H	\mathbf{H}		₩	_	-	-	+	+	${f \pm}$	$^{++}$		Ш	Ш		+	\pm	Н	\pm	壯		Ш			
3			H	-			Ш	\mathbf{H}		\dashv	\dashv	\mp	Ŧ	H	\mathbf{H}		Ш			+	+	H	+	H	Н	\blacksquare	Ш	1	
Z			\Box	#		П	Ш	#		7	1	丰	+	H	#	Ш	\mathbf{H}	Ш		-	+	H	7	\blacksquare	Π	\mathbf{H}	\blacksquare	1	
CONSOLIDATION (C.)			\pm		Ш	П	Ш	Ш		=	=	#	#	\Box	#	Ш	Ш	Ш		1	#	Ħ	#	\mp	Ш	##	Щ	1	
9					Ш	П	Ш	Ш			=	士	#	Ħ	#	ш	Ш	Ш		#	#	Ħ	#	#	Щ	##	##	1	
200					Ш	_						士	士	廿	廿	Ш	Ш	Ш			士		\pm	廿	Ш	Ш	Ш	1	
8			± 1	+	\mathbf{H}	П	Ш				$\exists T$	\pm	+	H	#	Ш	Ш	Ш			+		+	廿	Ш	Ш	Ш	1	
			F	-	\mathbf{H}	П	ш	\mathbf{H}			-	-	F	H	Ŧ	H	\mathbf{H}	\mathbb{H}	_	-	1		+	\mathbf{H}	Ш	\mathbf{H}	Ш	1	
			10.35			100								4.0							20	30		*0 *	6			00	

REMARKS

	ERIALS G REPOR	U. S. DEI SOIL C			SERVICE	ΓRIAX	IAL S	HEAR	TEST
FUENACE FIELD SAMPLE	E Bloom	C SITE		GEOLOGIC OF		SAMPL	L. SALLY	13'00 Km	toon 26+15
4	. NO.	2-10	,'		Glacie	al Till			
TYPE OF SAI	MPLE	SAAL		ohn	APPROVED BY	PD		DATE	5-69
Court	INDEX			022		SPECIMEN	DATA	1/2-1	TYPE OF
uscs /		: LL 2		7	HEIGHT 3.	o ". DI	AMETER	1.4 .	TEST
		02 17			MATERIALS				טט ר
		4 (* 200).			METHOD OF				cu 🖂
		; Gs (+#			1ndern				E 1
		.117.5p			MOLDING M				CD 🖂
MODIFIED	: Yd MAX.	·P	cf; w ₀	%	MOLDED AT	94.4% 0	F 7d MA	MUMIX	
DRY D	ENSITY	0	MOISTU	RE CON	TENT, %	TIME OF	MINOR	DEVIATOR	AXIAL
	CONSOLI- DATED	Parameter	START	DEG. OF SA	A CONTRACTOR OF THE PARTY OF TH		PRINCIPAL	STRESS	STRAIN AT
pcf ⊠ g/cc □	pcf 🖂		OF TEST	OF TEST		DATION (hrs.)	STRESS	$\sigma_1 - \sigma_3$ (psi)	FAILURE,
111.2		1.95	17.4	0	18.2	36.5	10	19.1	6.1
	112.1	0.95	17.3	<u> </u>	17.1	16.8	20	32.3	10.5
	113,0	0.98	17.7		16.4	39,9	30	39.9	6.0
					R STRESS			<u> </u>	
SHEAR STRESS (C), psi STRAIN (E), %	30 to c	#EAR PARAM 20 n 9 .364 425	deg.		**************************************	50			
Ø	0	10	20	30	MAL STRESS	50	20	0 6	•
REMARKS	2.1	00-10				, (O), psi		(24H)	/
	GACK	PRESSU	EED 10	SITUE	ME			911/	

MATERIALS

U. S. DEPARTMENT OF AGRICULTURE TRIAXIAL SHEAR TEST

TESTING REPORT SOIL CONSERVATION SERVICE with pore pressure measured

PE OF SAMPLE	TESTED AT ,		APPROVED BY	E. Silleding To	C. Loun 26+
CONDICTE	0 SML-	LINCOLN	LPD		12-15-69
MINOR PRINCIPAL STRESS,	PORE PRESSURE, u (psi)	EFFECTIVE MINOR PRINCIPAL STRESS, $\bar{\sigma}_3$ (psi)	DEVIATOR STRESS, σ ₁ - σ ₃ (psi)	FAILURE CRITERIA	AXIAL STRAIN AT FAILURE, E (%)
10	4.6	5.4	19.1		6.1
20	8.8	11.2	32.3	G Max	10.5
30	14.4	15.6	39.9	₫3	6.0

REMARKS SACK PERSSUEED TO SOTUE TE

G74/

TESTING	ERIA G RE	LS POR	r SC	S. DI	CO	RTM NSE	RV	T of	ION	RIC	ERV	URI	E F	EN										CE
	FING REPORT SOIL CONSERVATION SERVICE PENETRATION RESISTANCE TO STATE T																							
FIELD SAMPL	E NO.		LOC	ATION		, -				-	1	5	1	_			-			DE	PTHS	To-	57	2
6			IA	UX	5	pil	lw	94	STED	030	2	K.	2	Pa	PROVI	Z D BY	3+	20	•	DAT		- 2	8.,	
GEOLOGIC ON	084								SM	L-L	-11	CO	LN											
CLASSIFI	CATIC	N	C				LL.	3	_	PI_	11		CI	JRV	E N	0	2			_ 01	F_	2		_
MAX. PAR	TICLE	SIZE	INC	LUDI	ED I	N .	TES	T	<	#	4	-	ST	D. (4	STA	1 D-	6,9	8) [3; M	ETH	100	A		
				(MI	NUS	NO	. 4		2	.7	8		M	00.0	AST	M D	-155	57)C]; M	ETH	HOD			_
SPECIFIC	GRA	VITY	6,1	PL	us	NO.	4					_	10	THE	R T	EST		SE	E R	EMA	RK	5)		
- 2500	, \Box	宣	三	三				F	F	三	三			百	三	三	F	F		F	F	F		F
•	H	\pm	圭	=				E		\equiv	E		\equiv		E	E	E							E
A 5000	P		=	\models						=	=		=	=	=	=	=	=				H		=
NA NA	H	=	\pm	-							E			E	E	E	\equiv							E
S 1500	P			=								=	=	=		=	=	=				=		=
P.E.	H	=	=		7	=			\equiv	\equiv			\equiv		E									E
Z 1000	P	=	=						\vdash	=			=	=					H					
Į.			三			7																		
E 800	'	=	=			=		K		=			=	=	=			=	H					
ENE	ESTING REPORT SOIL CONSERVATION SERVICE PENETRATION RESISTANCE BOSTING REPORT SOIL CONSERVATION SERVICE PENETRATION RESISTANCE BOSTING REPORT SOIL CONSERVATION SERVICE BY TYPE ACC. BY TYPE ACC. BY THE ACC. B																							
	STING REPORT SOIL CONSERVATION SERVICE PENETRATION RESISTANCE STING REPORT SOIL CONSERVATION SERVICE PENETRATION SERVICE P																							
145	STING REPORT SOIL CONSERVATION SERVICE PENETRATION RESISTANCE STING REPORT SOIL CONSERVATION SERVICE PENETRATION RESISTANCE STETUT NACE BYOK 5/tc 2 New Je 75 e.y. DESINGT OF STILL STANDARD																							
	H	#	丰					=			-		F				OP	T. M	1015	т.	_	15	6	%
140	H		-														NA	TUR	AL I	MOIS	T			%
50							-						\vdash											
	日	\pm	\pm			7		1																
000	H	-	-					1			L- Canada								_					
	-		10	-	1				V-				二						-					
	1		STATE OF		\angle				X				Ē											
1 /30	Ħ		a series	X	\angle				×															
PACTED		, see	3	X					X															
PACTE		***	STEET STEET	X			3	0%0	X	120														
COMPACTE		***	A DEST	X	X ,		3	090	X Contraction	1200	9,													
F COMPACTE			10 m	X			, Q	090	X Q	A. A	Sing													
OF COMPACTE		*	A SEPT	X	<u> </u>		300	090	X Q dig	14,	SATURE CO	84												
OF COMPACTE		A SE	A SECTION AND A	*			3	090	X C E	140	San July Co	104 tu												
OF COMPACTE			SEE ST.	X) Q	090	X Q B	140	Service Co	100 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m	501											
DENSITY OF COMPACTE		**************************************	SEE ST	X				070	X P	Taria de la constante de la co	A TO SEE	100 to 1	501											
DENSITY OF COMPACTE				X			3	090	X Q Q	The state of the s	San Co	May the or	501											
DENSITY OF COMPACTE		A SE	A STATE OF THE STA	7			2	010	X est	1	Sing of Co.	100	501											
DENSITY OF COMPACTE			REPORT OF THE PROPERTY OF THE			V V		090				200 Line 13												
DENSITY OF COMPACTE		/ A / / / / / / / / / / / / / / / / / /	Page Control of the C	۱ ا		17								2		DRY	w	EIG	нт					
DENSITY OF COMPACTE		10	A STATE OF THE STA		MOIS	IS F	RE	CO HE M	NTE	NT.	A FRA	ERC	ENT	2		DRY	w	EIG	нт					

< NO. 200 52 %; < NO. 4 89 %; < 3 IN. 160 %

		-	_	-			-		_			_	_	_		_	_			_			59:	1.5	- 5
FIELD S	AMPLI	NO.			LOC	ATION	. 50	:11	1.10	и.	70	15	'⊄	Da	~	2	6.	+1	5.	,		DE	PTH 2	/	0'.
GEOLOGI	C ORIG					7	7	111	24.4	71	STED	AT			.1	AP	PROVI	ED BY				DA	TE	-	
-	_	_		_	,							1	-					-		,				-	
															-										
SPECI	FIC	GR	AVIT	Y ((3,1	{ P	LUS	NO.	4	_	_			_	0	THE	R T	EST		SE	E R	EMA	RK	5)	
- 2	500	E	T	三	三	E	T	E	F			F	三	T	=	F		三	E	E		三	F	F	耳
	145 140 135 130 125 140 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 135 130 130 130 130 130 130 130 130 130 130																								
S CE	000									E	E	E	E	\equiv		E	E	E			E	=			
STAI								=			=	=	=	=				=				=			
RESISTANCE	500	E	E			F	1														F	F		=	
	000	E								E	E	E													
) E					\equiv	E	E	X						E				E							
PENETRATION	800				\equiv				K					\models		E									
EN		\equiv	E			E	巨				×			\equiv		E	\equiv			\equiv		三	\equiv		丰
-	ING REPORT SOIL CONSERVATION SERVICE PENETRATION RESIST IN STATE IN STATE																								
"	43		E																						
,			\vdash																						
= "	TV		\vdash													\equiv			NAT	URA	AL.	MOIS	T		_ *
					_										$\ \cdot\ $										
					-45	-	1	Ť.	×										-	-	_	-			-
19 /	ىد				10	1	*				- Comment No.		Delin and		annie de la constant	and the same									
801				- 0	4	1				3	×														
				- 0	\$ /	1	*				×														
ACTED	30			- 0	\$ /	/					×														
ACTED	30			- 0	* /	/	* 			090	×	COMPA	2												
F COMPACTED	30			- 0		/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3	10 of	×	CON 14	No. of Section 19												
OF COMPACTED	30			- 0		<i>/</i>			S		*	Company to the	A 400												
OF COMPACTED	30			- 0		<i>/</i>			S S	010	×	20 No. 14	7: 45 TO	(A. C.)	a ap										
OF COMPACTED	30			- 0	\$ / \$ /	/			9 0	040	*	CONTROL NO.	Te William		- Ap										
DENSITY OF COMPACTED	30			- 0		<i>/</i>			S S		*	COMPA	\$ 4.500 O		De 200										
DENSITY OF COMPACTED	30			- 0	\$	<i>/</i>			P &	in of the	* ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Company of the control of the contro	**************************************	35 ST 18 18 18 18 18 18 18 18 18 18 18 18 18	- Ap										
DENSITY OF COMPACTED	30			- 0	\$	2			9 Q	is to	X	CONTRACT OF THE PROPERTY OF TH	20	ST S	50/0 50/0										
DENSITY OF COMPACTED	30				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	Marie San						2												
DENSITY OF COMPACTED	30				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	MOIS	TUI	RE	, 00	NTE	NT,	2 P	OERC				DRY	WI	EIGI	нт				
DENSITY OF COMPACTED	30					Z CUR	MOIS VE IS	FOR	THE OH O	CO MINU	NTE IS NO TAL S	NT.	2 PI RACT	O ERC	2 ENT	0		DRY	WI	EIGI	41				

GPO 1950 0-476667

STATE	PROJ	UCDOCO P	500 t	
BY New J	DATE CHEC	KED BY DATE		JOB NO.
SUBJECT -	D	. 1 / /		,
	indution ferme	- 100 mg	,	SHEET 1 OF 6
Summa	ry of field	lest Don	a	
Material	B - Young	glocial !	T. //	
Tood Wa	le_ Soil Closes_	Dearl	K fed	
L .	5M-Sand. w/159	8'-10"	0	
	. ¿S:1+	10.12	0	
L.: ::	cobbles, boulders		5.4	Boulders & cobbles
	gravel w/matrix of Sell	y soul		
2.	3m w/15-20% fine		······· • .	
3	5 m w/ 12-152 fee	(10' - 12'		
		} 15' - 17'	0.	
!		20 - 22'	35	(Possibly Mady E)
100	_ GM- Culles, grown	30 - 32	4.3	(Possibly Matil E)
	boulders w/selly sall			
4 .	10-12 cobbles &	10 - 15	25	Boulders & Cobbles
	bouldess	: .		
12	3M - W/15-25% fin	u 11 - 13	0.1_	
	Sc/Sond w/20-302	11 - 13		
	Clow gloot fines	16-10.	0	
201	SC 5 sond w/40-50	2 11 - 13	0	
	SC S sand w/40-50	16-18	0	
				Mi_,
202	SC & Soul W/40-50	2 11 - 13	0	
	(Jimes	16-18	0	
	QL	26 - 28	0	
601	SM Soul W/10-15	16-18		
	lines wy 10-15	0 10 10		
602	shif sond W/12-1	5% 10-12	0	
	1 linear	JS- 17	0	
			- !	; :-:: i
	+			
	-!			
				· · · · · · · · · · · · · · · · · · ·

SCS-523 REV 5-58		SOIL	CONSERVATION SERVICE
STATE New Jerscy	PROJECT	0	£+0 1950 0-
BY DATE	CHECKED BY	DATE Broo	JOB NO.
SUBJECT -			
SUBJECT FOUNdation P	ermeobility		SHEET 2 OF 6
Summary of F	ald tool	Do 4	
- Sommary or	eld lest	24 14	
Material C	Interglacia	1 Flanci	
	Linergiacia	1.100141	
Test Hole Soil	Class De	ptl	K Gd
- rest note osti	(/	m	L do .
10 0-11' SW	-SM (8-12% fue) 10	-/2	1.0 CL houlf
		-/3	1.0 CL famil-
		-18	1.4
	M (10-1523:14) 11		0.2
	12- 15% Fines \$16		0.1
		-23	1.1
<0		26	6.3
		-28	1.8
			• • • • • • • • • • • • • • • • • • • •
			111111111111111111111111111111111111111
	7		
	·		· · · · · · · · · · · · · · · · · · ·
		TITT	
			T
1 1 1 1 1 1 1 1 1 1			
			1

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

New Jer	SCY PROJECT	FURNACE BY DATE	Brook JOB NO.	
IR IECT			562	
Fou	udation Pern	neability	SHEET_3	OF_ 6
Summar	y of Field	Test Dot	a	
Materia	1 D Lacu.	strine		
·		.:		
Jest Hole	Soil Class	Depth	K fpd	
2	ML	25- 27		
		25- 21	• • •	
6	SC Sw/20-30% fine	8-10	10	
		10-12	10	
7	ML	10-12		
	CL	15-17-1-	0	
	CL	21-23		
		26-28		<u>i </u>
	C L	3/-33		
		36-38		- 1
	CL	38-40		· · · · · ·
13	CLS	36-38	0 0	
	7	41-43	0	
14	CL CL	. //- /3	0	
		16-18	0	
15	CL	36-38	0	
	Li u	42-44		
201	CL	_21-23		
301	ML	26-28		1
302	SC W/30-40% CL			
363	SC W/25-35% fine	11-13		-
304	ML	10-12		
1	SM w/12-15% fine			<u> </u>
502	CL	13-15		1 7 7
		16-18	0.1	
	и	21-23		
,		26-28		
604	SC 420-40% fine	10-12	1 1 10	1
605	C.L	11-13		
		16-18		1
-+				
				

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

TATE AT PROJECT		EPD 19:0 0-47006
New Jersey PROJECT FUY	PATE Bro	JOB NO.
SUBJECT _	11.1	
Foundation Permeab		SHEET 4 OF 6
Summary of Field Te	est. Date	
Material E - Interg.	lacial Flu	vial
Test Hole Soil Class	Death	k (fpd)
7681 11016 - 9611 6143	Depth	1, abox
2 5P-SM	30-32	10.3
4. 5M	20-22	18.8
31.5-37-SP-SM 26-31.5 SM	31-33	12.1
5 3M 12-15% fine	15-17	0
	21-23	0.2
5M-12-152 fine	20-22	0.1
5M SW12-20% fines	15-17	1.8
SP	36-28	1.8 73.4 Water
SP	41-42	1/3.8 Searing
SP.	46-48	10.0
CL	50 -51.5	0
8 CL	42-50	
9 Boulder & Cobbles	20-22	19.6
SP.	22.24	18.0
SM	32-34	0.2
10 21-24'(CL) 24-30 (5w-sm)		5.0
11 SW-SM (10-12% fine)	35 - 37	0 (ML)
1 SW-SM (10 122 PM)	42-45	0.2
	646-48	4.7
	C46-49.5	13.9
ML	51-53	0 (ML)
<u> </u>	53-55	0 (ML)
<u> </u>	51-60	0.1 (ML)
SM	60-61	
13 GW-GM	51-52.5	[[-] 1. [8.]
4 4 4 6 6 6 6 6 6 6 	55	7.8
The state of the s	60-65	2.8
GW-CM-270' SM (70-72)	67-72	3.8
301 50	15-18	1.5
59-621.5' ML 21.5-29	21-23	30.4
302 - SMS SM W/12-20%		0.4
i Crist	25-27	0.2
SM w/ 20-309. fines	30-32	0.2
	35-37	8.6

600 1010 0-47

SOIL CONSERVATION SERVICE

STATENEW Jersey	PROJECT	rnace Rosa	H
BY DATE	CHECKED BY	mace Broo	JOB NO.
SUBJECT Faunda 1	ion Permeab		
			SHEET 5 OF 6
Summary .	Field TR	st Dute	/
material E	- 1ntergi	acial Fluvial	- (Con't)
Test Hole	So. 1 Class	DH	r 6.11
303	SM	Depth (21:23'	x (FpJ)
	w/12-20% fines		
		. 32-34	6
		(34-35.5	0.2
304	SM W/12-157. 6		17.3 .1
501 by at 26-27.5	5P- 0	27.5-29.5	17.3
	5M S W/12-15	1	1.2
		(21-23	0
502	SW-SM	31-33	0.7
	Sw-SM	42.6-446	3. 2
		48-50	2.4
603	SM	15-17	0.2
604	SW-SM	25-27	7.5
	30-311	21-23	
		26-27	
. 605	SW-SM	26-28	0.2
	- "	_31-33	0
701	SP-SM	37-39	0
	3M	25-27	0.7
	SP-SM	30-32	0.7
	1		
.,			
			with it is
7 1 1 7 1 1 7		1.4.4	

	1886	FCT			600 1930 0-4
Vew Jer	sey	FUTNACE FORM	e Broo	K	
IY	DATE CHEC	KED BY DA	TE	JOB NO.	
Found	1.1. 0	2. 1. 1. 1		6	6
Founc	sation term	eabil: 4		SHEET 6 OF	F. 0
Summa	ry! of f	Field Test	Da ta		
			1		
Materia	1 FI G	Slacial T	11		
			1		
Jest Hole	Soil Class	Dee	+4	K ((pd)	
				1111	
3 .	CM Cobbles , gray	Metrix 35-	37		
	GM Sysilly Sond	35-		. 0	
		40-		115	
5				4.5	
	SM Sity so				
7.	SM & Sand u			0.2	
	L Fine			: • • • • •	
	" buc ? me		66.5	0.5	
	1. 2 fine	71-		1.1	
15	5 M 5 m 0. w/ 15		56.5		
201	SC Sond w/40		-27	0.	
1 1 1 1 1	-: Bloki fire	A	-36	0	
301	3 M. W/Traces	of Gobles 34	-36	2.4	
302	SM W/20-309		-42	0.6	
304	SM W/ 20-30	2 siltlerlyal 35-	37	0	
501	SM. W/20-30%	fines 26	-28	. 0	
601	SM SW/12-15	% fine 26	- 28	0.4	
	(- 38	8.6	
603	5m 5w/12-15	% fine 30.	314	1. 0.	
		35	- 37	0	
604	3m 54/25-55	2 fines 36	- 37	0	
	17'	0 46	-46.5	0 .	
605	SM (W/ 15-	25% 42	-44	1.0	
	1 Times		-54.6	. 0	
		58	-60	0.1	
1 1 1 1 1		j., 1	1_1_1_1_1	1	
7 1 1 1 1					
		1			
		T			

Form SCS 357

F	OJECT UR THOO	one N	STAT	E SIS	-	_	3 /	300	M		-	-	E	AN	# 2 ALYZ M L	ED A	NT .	1	CC	n	· · ·		EI	75.	E	D 8Y	 A.		 _
REMARKS		ورم	00							90	OPPOSITE	1.44	PPOSITE	027	1.48	1.45	PPOSITE	1.88	1.83	1.88									
ASSI- ADOPTED DESIGN DATA	ION (pef) (pef) (pef) (pef) (deg.) ton 6	ME 1109 125.0 130.0 67.5 30.5 .589 300	364							TION CONDITIONS @ STATION 9+	BERM- ARC CUT FROM	B. (20°-425) ONLY	ERM-ARC CUT FROM O	FMB (30.5°-300) ONLY	43 TRIAL #	45 TRIAL #1	NO BERM-ARC CUT FROM O	B. (20°-425)	AS TRIAL	13 AS TRIAL #4									
	SOURCE AND USE OF MATERIALS FICA	EMBANKMENT CL-1								E MAXIMUM SEC	FULL DRAWOOWN-1	SHOULDER THAU &	roomn-	SHOULDER THRU	SAME	SAME CO	DRAIN @ 46 = 0.6-	1	SAME	SAME CONDITIONS									
	SOURCE		0	9	•	0	9	0	0	TRIAL SLOPE	UP 3:1		M UP 3:1		3	np	4 DN 3:1		3	6 DN 3:1		1	1		1			+	1

PERCENT FINER BY ORY WEIGHT

FURNACE BROOK LOGS OF DRILL HOLES AND TEST PITS

	LOGS OF DRILL HOLES		- 1
	AND TEST PITS	14.7	, .
		1.1	1 41
TTCT DIT 1 G DAY CT 10:1		- 1. 1 5	M / .
TEST PIT 1, Q DAM STA 10+4	U, ELEV 563.2	1 / C 41	vit
0.0 1.0 Topsoil		2-4	/100
1.0 3.5 Clay, low pl	as., sandy, mottled		(CL)
3.5 12.0 Sand, silty,		d w/15-20% fines,	(SM)
glacial till			
TEST DIT 2 101 DICHT G	AN 574 21400 FIFE FE	9 (
TEST PIT 2, 10' RIGHT, & C	AM STA ZITTO, ELEV 50	0.0	
0.5 5.5 Sand, clayey,	w/40-50% low size 6	lay fine to medium	(sc)
low perm., gl		ray, The to medium,	(30)
5.5 7.5 Clay, low pla		d	(CL)
7.5 10.0 As 0.5 - 5.5			(sc)
715 1010 112 015 315	with seattered cobbie	s, gracial trii	(30)
TEST PIT 101, 515' LEFT, &	DAM STA 25+70 FLEV	581 L	
0.0 0.5 Topsoil		201.1	
0.5 10.0 Glacial till	as T-608		(SC)
			,,,,
TEST PIT 102, 290' LEFT, &	DAM STA 24+05. ELEV	582.6	
0.0 0.5 Topsoil w/nu	merous cobbles, scatt	ered boulders	
0.5 1.0 Silt, sandy,	low plas., 20-40% sa	nd, mottled, moist	(ML)
1.0 7.0 Glacial till	as T-608		(sc)
TEST PIT 103, 170' LEFT, &	DAM STA 22+75, ELEV	585.0	
0.0 1.0 Topsoil			
1.0 5.5 Glacial till			(SC)
5.5 7.5 Silt, gray,	low plas.		
7.5 8.0 Glacial till	as T-608 slight seep	age @7.5	(SC)
TEST PIT 104, 70' LEFT, &	DAM STA 22+80, ELEV 5	85.4	
0.0 0.5 Topsoil	11.0 (00) 1		
0.5 7.0 Sand, clayey	W/40-60% low plas. c	lay, sand fine to (St	or CL)
medium w/tra	ices coarse sand, very	low perm., brown	(01)
7.0 12.0 Clay, sandy,			(CL)
OT COarse sa	nd, gravel and cobbles	, dark gray	
TEST PIT 105, 90' LEFT, Q	DAM STA 20+70 SLEV S	00 0	
0.0 0.5 Topsoil	DAM 31A 24+70, ELEV 5	07.0	
	y, w/40-50% low plas.	fines sand fine	(sc)
to medium w	trace of cobbles, br	own low nerm	(30)
slight seep		owit, fow permit,	
2 · · g 500p			
TEST PIT 106, 110' LEFT, &	DAM STA 26+45. ELEV	599.9	
0.0 0.5 Topsoil			
	ey, w/40-50% low plas.	fines, fine	(SC)
	traces of gravel, mo		
glacial ti			

TEST	PIT	107,	130' LEFT, & DAM STA 28+45, ELEV 608.9	
	0.0	0.5	Topsoil	
	0.5	12.0	Glacial till as T-106 w/less moisture	(sc)
TEST	PIT	108.	70' RIGHT, Q DAM STA 28+20, ELEV 611.1	
	0.0	0.5	Topsoil	
			Sand, silty, with 40-50% low plas. fines, fine to	(sc)
			medium, trace of gravel, moist, brown, glacial till	(30)
TEST	PIT	109,	70' RIGHT, & DAM STA 26+15, ELEV 599.5	
			Topsoil	
	0.5	12.0	Sand, clayey, w/40-50% fines, fine to medium, trace	(sc)
			gravel and cobbles, moist, brown, glacial till	
TEST	PIT	110.	70' RIGHT, & DAM STA 24+30, ELEV 593.4	
	0.0	0.5	Topsoil	
			Sand, clayey, w/40-50% low plas. fines, fine to medium	(sc)
			brown, moist, glacial till	, (50)
TEST	PIT	111,	345' RIGHT, & DAM STA 27+50, ELEV 605.6	
	0.0	1.0	Topsoil and boulders to 2.0, numerous cobbles	
	1.0	12.0	Sand, clayey, w/40-50% low plas. clayey fines, sand	(sc)
			fine to medium trace of gravel and cobbles, glacial	
			till	
TEST	PIT	112	420' RIGHT, Q DAM STA 25+20, ELEV 594.4	
	0.0	0.5	Topsoil	
			Sand, clayey, w/40-60%, low plas. fines, sand, fine	(sc)
			to medium, cobbles and boulders from 0-2.5, glacial til	1 (CL) or
				. (02)
TEST	PIT	113,	660' RIGHT, Q DAM STA 25+00, ELEV 590.3	
			Topsoil	
	0.5	12.0	Sand, clayey, w/40-50% low plas. fines, sand fine	(SC)
			to medium scattered cobbles, seeps from root zone,	
			glacial till	
TEST	PIT	114.	630' RIGHT, & DAM STA 23+20, ELEV 582.1	
	0.0	0.5	Topsoil	
	0.5	8.0	Sand, w/40-50% low plas. fines, fine to medium	(sc)
			w/trace of gravel and cobbles, glacial till	(/
TEST	PIT	115,	390' RIGHT, Q. DAM STA 21+70, ELEV 580.0	
			Topsoil	
	0.5	6.0	Sand, clayey, w/40-50% fines, scattered cobbles, fine	(śc)
			to medium sand, boulders scattered @4' glacial till	
TEST	PIT	116.	380' RIGHT, & DAM STA 23+05, ELEV 585.0	
	0.0	0.5	Topsoil	
			Sand, clayey, w/40-50% fines, sand fine to medium	(SC)
			trace of cobbles and boulders, glacial till	
			7001 1 G	
TEST	PIT	001,	780' LEFT, Q DAM STA 10+60, ELEV 585.3	
			Topsoil, stonedrain	/cul
	4.5	7.0	Sand, silty, gravelly w/12-15% fines, well graded Gravel, sandy, w/40-50% sand, well graded 5-12%	(SM)
	7.7	7.0	fines, trace cobbles and boulders, seepage $@4\frac{1}{2}$ rapid	(GW-GM)
			to 7' caving	
			내가 그렇게 하는 사람들이 하는 사람들이 얼마를 보는 것이 되었다. 그 사람들이 얼마를 보는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 다른 사람들이 되었다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없	

TEST PIT 602, 765' LEFT, Q DAM STA 11+60, ELEV 580.4	
0.0 4.0 Silt. low plastic w/trace organic, soft, gray	(ML)
4.0 8.0 Gravel, sandy, w/40-50% sand, w/5-10% silty fines.	(GW-GM)
well graded, trace cobbles and boulders, seepage	
@' fairly dense	
TEST PIT 603, 675' LEFT, & DAM STA 16+40, ELEV 556.3	
0.0 0.5 Topsoil	
0.5 4.5 Sand, clayey, w/35-45% low plas. clay, sand medium	(sc)
to fine, poorly graded, grange moist	(00)
4.5 11.0 Gravel, sandy, w/8-12% silt, well graded to 8", 40-	(GW-GM)
50% sand, moderate perm., wet, seepage @9' alluvium	
11.0 12.0 Sand, clayey, w/20-30% fines, well graded, moderate perm.; glacial till	(sc)
TEST PIT 604, 660' LEFT, Q. DAM STA 17+60, ELEV 558.2	
0.0 0.5 Topsoil	
0.5 9.0 Sand, clayey, w/40-50% low plas. fines, brown,	(sc)
well-graded	
9.0 9.5 Sand, w/8-12% fines, well graded, w/trace gravel	(SW-SM)
seepage @ 1-2 gpm	
9.5 12.0 Clay, firm, moist, low plas., very low perm.	(CL)
TEST PIT 605, 635' LEFT, Q. DAM STA 18+55, ELEV 559.7	
0.0 0.5 lopsoil	
0.5 11.0 Sand, clayey, w/40-50% fines, well graded, sand,	(sc)
glacial till	(00)
11.0 12.0 Clay, low plas., brown	(CL)
TEST PIT 606, 610' LEFT, & DAM STA 19+50, ELEV 564.5	
0.0 0.5 Topsoil	
0.5 12.0 Glacial till as T-605	(sc)
	(30)
TEST PIT 607, 595' LEFT, & DAM STA 20+65, ELEV 563.6	
As Test Pit 606	
TEST PIT 608, 590' LEFT, & DAM STA 12+55, ELEV 564.5	
0.0 0.5 Topsoil	
0.5 5.0 Silt, sandy, low to mod. plas. w/10-20% fine sand,	(ML)
mottled gray, orange-brown	(ML)
5.0 9.0 Sand, clayey, w/40-50% low plas, fines, fine to	(sc)
med. sand, trace gravel, low perm., glacial till	
TEST PIT 609, 560' LEFT, & DAM STA 22+60, ELEV 571.3	
0.0 0.5 Topsoil	
0.5 12.0 Glacial till as T-608	
TEST PIT 610, 540' LEFT, & DAM STA 23+80, ELEV 576.7	
0.0 0.5 Topsoil 0.5 10.0 Glacial till as T-608	
10.0 12.0 Clay gray w/5-109 and and and and	
10.0 12.0 Clay, gray, w/5-10% sand and gravel, low plas., low perm.	(CL)
TEST PIT 611, 360' LEFT, & DAM STA 21+65, ELEV 574.3	
0.0 0.5 Topsoil	
0.5 7.0 Sand, clayey, w/40-50% low plas. fines, fine to	(sc)
medium sand, trace gravel, scattered cobbles and	
boulders to 2', low perm.	

TEST PIT	612,	315' LEFT, & DAM STA 17+50, ELEV 575.1	
0.0	0.5	Topsoil	
0.5	8.0	Glacial till, as T-611 w/5-10% cobbles and scattered	(sc)
		boulders, brown, low perm.	
TEST PIT	613.	500' LEFT, Q DAM STA 15+95, ELEV 556.8	
0.0	0.5	Topsoil	
		Sand, clayey, w/40-50% low plas. fines, sand well	(sc)
		graded, trace gravel, dense, glacial till	,
9.0	11.5	Gravel, sandy, w/30-40% well graded sand, 10% cobble	s, (GH-GM
		8-12% fines, wet, slight seepage	
11.5	12.0	Clay dense, low plas., brown, low perm.	(CL)
TEST PIT	614.	480' LEFT, & DAM STA 15+10, ELEV 555.9	
0.0	0.5	Topsoil	
0.5	1.5	Sand, silty, w/30-40% clayey fines	(SC)
1.5	6.0	Sand, gravelly, silty, w/20-30% gravel, 12-15%	(SM)
		low plas. fines, well graded, slight seepage @5'	
6.0	8.0	Clay, low plas., brown, firm, moist, very low perm.	(CL)
TEST PIT	615,	445' LEFT, & DAM STA 14+20, ELEV 554.6	
0.0	0.5	Topsoil	
0.5	2.0	Sand, gravelly, w/12-20% clay, cobbles	(sc)
2.0	7.0	Gravel, sandy, silty w/40-50% sand, 8-12% fines,	(GW-GM)
		all well graded, moist, cobbles to 15", low perm.,	
		slight seepage @6'	
7.0	8.0	Clay, firm, moist, low perm.	(CL)
TEST PIT	616,	340' LEFT Q DAM STA 15+05, ELEV. 556.8	
		Topsoil	
0.5	6.0	Sand, clayey, w/35-45% low plas. clayey fines, well	(SC)
		graded, dense, low perm., brown, glacial till	
6.0	9.0	Clay, firm, low plas., very low perm., brown	(CL)
TEST PIT	617,	365' LEFT, & DAM STA 14+05, ELEV 554.3	
0.0	0.5	Topsoil	
0.5	4.0	Sand, clayey, w/35-45% fines, well graded, brown,	(sc)
		low perm.	
4.0	5.5	Sand, gravelly, w/8-12% fines, well graded, seepage	(SW-SM)
5.5	9.0	Clay, firm, moist, low plas., low perm., brown	(CL)
TEST PIT	618,	355' LEFT, & DAM STA 13+45, ELEV 551.0	
		Topsoil	
0.5	3.0	Gravel, sandy, w/cobbles, silt, 40-50% sand, 3-12% :	(GW-GM)
2.0	6 5	fines, all well graded	(au au)
5.0	0.5	Sand, silty, w/8-12% fines, well graded, seepage general	(SW-SM)
6.5	10.0	Sand, clayey, w/15-25% low plas. fines, poorly	(sc)
		graded, medium sd., low perm., trace of fine	
		gravel	
10.0	12.0	Sand, clavey, w/30-40% clay, well graded low norm	(32)

TEST	PIT	619,	215' LEFT, 4 DAM STA 14+65, ELEV 551.5	
	0.0			
	0.5	7.0		(SC)
			graded, sand, brown, low perm., w/small isolated	
			sand pockets, glacial till	
	7.0	12.0	Clay, low plas., firm, moist, very low perm.,	(CL)
			gray	
TEST			190' LEFT, & DAM STA 13+40, ELEV 548.6	
	0.0	0.5	Topsoil	
	0.5	6.0	Gravel, sandy, w/40-50% well graded sand w/8-12%.	(GW-GM)
	6.0	9.0	Clay, low plas., firm, moist, gray, silty fine.	(CL)
TEST	PIT	621,	380' LEFT, & DAM STA 10+75, ELEV 559.4	
			Topsoil	
	0.5	2.5	Sand, silty, w/12-15% fines, fine to medium, trace clay	(SM)
	2 5	7 6		(cn)
	2.5	1.5	Sand, medium to coarse w/10-20% fine sand, angular, seepage @5'	(SP)
	7.5	8.0	Gravel, permeable, w/cobbles, rapid seepage	(GW)
TEST	PIT	622,	140' LEFT, Q DAM STA 5+85, ELEV 566.9	
	0.0	0.5	Topsoil	
	0.5	3.0	Sand, silty, w/20-30% fines, sand fine to medium	(SM)
	3.0	8.0	Sand, silty, w/12-20% fines, well-graded with	(SM)
	•		trace gravel, seepage @6', glacial till	(311)
TEST	PIT	623.	250' LEFT, & DAM STA 10+05, ELEV 563.1	
	0.0	0.5	Topsoil	
			Sand, silty, w/30-40% fines, sand fine to medium	(SM)
	3.0	11.0	Sand, silty, w/12-15% fines, sand well graded,	(SM)
	,		dense, seepage slight below 5', glacial till	(311)
TEST	PIT	624	, 70' LEFT, & DAM STA 6+90, ELEV 571.3	
	0.0	1.0	Topsoil	
			Sand, silty w/12-20% silty fines, trace of gravel	(SM)
			and cobbles, well graded, dense, low perm., seepage	(SM)
			@ 11', glacial till	(3/1)
TEST	PIT	625.	80' LEFT 4. DAM STA 3+10, ELEV 566.2	
	0.0	1.0	Topsoil	
			Sand, gravelly, cobbles, boulders, well graded	(SW-SM)
		0 -	w/5-10% fines	
	4.0	0.5	Sand, medium to coarse w/3-5% fines, trace gravel, seepage @ 6'	(SP)
TEST	PIT	626.	40' LEFT, & DAM STA 9+90, ELEV 563.9	
	0.0	1.0	Topsoil	
			Sand, silty, w/15-20% fines, well graded, trace	(SM)
			cobbles and boulders	(0.1)
	5.5	7.5	Sand, gravelly, w/ 5-10% fines, well graded, seepage	(SW-SM)
			@ 61	
	7.5	11.0	Sand, silty, w/12-15% fines, well graded	(SM)

(

TEST PIT 627, 70' RIGHT, & DAM STA 10+90, ELEV 559.4

0.0 0.5 Topsoil
0.5 10.0 Sand, silty, trace of clay, w/15-20% low plas. fines, (SM) well graded, trace of gravel, dense, glacial till

TEST PIT 628, 40' LEFT, & DAM STA 11+00, ELEV 552.5

0.0 1.0 Topsoil
1.0 3.5 Sand, silty, w/30-40% fines, low perm., mottled
3.5 9.0 Sand, silty, w/12-18% fines, well graded, gravelly, (SM)

w/scattered sand and gravel lenses, seepage @ 6' (rapid)

FURNACE BROOK LOGS OF DRILL HOLES AND TEST PITS

Standard

Penetration Depth Blows/foot DRILL HOLE 1, 10 LEFT, & DAM STA 7+70, ELEV 577.6 1.0 Topsoil 0.0 0:5 1.5 1.0 20.0 Sand, silty, w/15% low plastic silt, 2.5 3.5 20 (SM) well graded, angular, trace of gravel. 4.5 52 glacial till 6.5 7.5 58 8.5 9.5 92 10.5 - 11.5 128 15.5 16.5 52 20.0 28.0 Cobbles, boulders, gravel, with matrix 20.5 of silty sand, mod. perm. 28.0 47.0 Gneiss, fractured, weathered 27.0 - 28.0 92 DRILL HOLE 2, 30' RIGHT, & DAM STA 9+35, ELEV 575.2 1.0 Topsoil 0.0 0.5 1.5 13 1.0 20.0 Sand, silty, well graded, w/15-20% silty (SM) 2.5 3.5 27 fines, low perm. - till 4.5 5.5 52 6.5 52 7.5 8.5 58 9.5 10.5 - 11.5 37 15.5 - 16.5 33 20.0 27.0 Silt, sandy, w/30-40% well-graded sand - 21.5 (ML) 20.5 22 low plastic/ till 25.5 - 26.5 40 27.0 30.0 Sand, clean, w/40% fine, 50% medium, (SP) 30.5 - 31.5 54 permeable 30.0 35.0 Sand, w/8-12% \$11ty fines, fine to (SP-SM) med i um 35.0 . 36.5 Sand, silty, 40% fine, 40% medium, (SM) 35.5 - 36.5 53 20% coarse, trace gravel, w/15-20% silty fines 36.5 49.0 Sand, silty, fine to medium, w/>12% fines, (SM) 41.5 - 42.5 89 gneiss residual, slowly permeable DRILL HOLE 3, 10' LEFT, & DAM STA 10+40, ELEV 562.0 0.0 1.9 Topsoil' 0.5 -1.5 7 1.0 30.0 Sand; silty, well-graded, w/12-15% low (SM) 2.5 3.5 23 plastic silty fines, low perm., till 4.5 5.5 52 11.5 10.5 34 15.5 - 16.5 100 - 21.5 20.5 83 25.5 - 26.5 108 30.0 45.0 Cobbles, gravel, boulders, with silty - 31.5 (GM) 30.5 50 dand matrix, low perm., till 35.5 - 36.5 92 - 38.5 37.5 130 45.0 50.0 Boulders and decomposed rock in silty (GM) sand matrix, low perm.

				Standar Penetrati Depth Blows	on
DRILL H	OLE 4.	4 DAM STA 11+25, ELEV 555.4		beptin brom.	,,
0.0	6.0	Topsoil		0.5 - 1.5 2.5 - 3.5 4.5 - 5.5	49
		Sand, silty, well-graded, 12-15% low plastic silt, glacial till	(SM)	6.5 - 7.5	116
10.0	12.0	Cobbles and boulders			
12.0	20.0	Sand, silty well-graded, 12-15% low plastic silt, glacial till	(SM)	12.5 -13.5 16.5 -17.5	69
20.0	26.0		(SM)	21.5 -22.5	
		fine, poorly graded, poor stratification low perm. except locally	on,	23.0 -24.5	66
26.0	31.5		(SM)	26.5 -27.5	51
31.5	37.0		(SP-SM)	32.0 -33.0	56
,,	•	coarse, w/trace gravel, w/10-20% low plas. fines, moderate perm.		36.0 -37.0	52
		€ DAM STA 11+95, ELEV 547.3			
0.0	4.0	Sand, silty, fine, poorly graded sand, gray, soft alluvium	(SM)	0.5 - 1.5 2.5 - 3.5	
4.0	8.0		(SP-SM)	4.5 - 5.5 6.5 - 7.5	
8.0	10.0		(SM)	8.5 - 9.5	80
10.0	15.0	Sand, silty, w/gravel, well-graded fine to coarse, w/12-15% fines, soft, alluvium	(SM)	10.5 -11.5	14
15.0	20.0		, (SM)	15.5 -16.5	45
20.0	21.0	Boulder			
21.0			(SW)	21.5 -22.5 26.5 -27.5	
				31.5 -32.5	-
36.0	38.5	Sand, silty, well-graded, w/15-20% fines, low perm., glacial till	(SM)	37.0 -38.0	
38.5	39.5	Boulder			
39.5	44.0	그들은 그들은 아이들이 아이들이 아이들이 되었다면 하는데 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들	es,	41.5 -42.5	117

				Deptil	DIOW	3/100
DRILL H	OLE 6.	£ DAM STA 12+60, ELEV 545.9				
0.0	2.0		(ML)	0.5 -	1.5	6
2.0	21.0	Sand, clayey, med. to fine w/trace	(SC)	2.5 -	3.5	38
		of coarse and trace gravel, gray,		4.0 -	5.0	16
		w/20-30% fines		5.5 -	6.5	18
				7.0 -	8.0	9
				8.5 -	9.5	19
				10.5 -	11.5	22
				12.5 -	13.5	40
				15.5 -	16.5	34
				20.5 -	21.5	29
21.0	22.0	Sand, fine to med., poorly graded,	(SM)			
		w/12-15% fines, orange, alluvium				
22.0	37.0	Sand, silty, w/12-20% silty fines,	(SM)	25.5 -		
		well-graded fine to coarse sand,		30.5 -		
		glacial till		35.5 -	36.5	87
DRILL H	OLE 7.	& DAM STA 13+30, ELEV 544.9				
	6.0		SW-SM)	0.5 -	1.5	45
	•	5-10% fines, some cobbles and	,			
		boulders				
6.0	11.0	Silt, gray, w/traces of clay, moist,	(ML)	6.5 -	7.5	30
		low to med. plastic		10.5 -		
11.0	15.0	Silt, brown, w/traces of clay, moist,	(ML)			
		low to med. plastic				
15.0	35.0	Sand, silty, w/12-20% low plastic fines	, (SM)	15.5 -		
		sand well-graded, low perm., brown		20.5 -		
				26.5 -		
			/·	31.5 -		
35.0	46.0		(SP)	36.5 -	37.5	133
46.0	50.0	water bearing	(SP)	46.5 -	1.7 E	16
46.0	50.0	Sand and gravel, sand med. to coarse, clean, permeable, water bearing	(37)	40.5 -	47.5	10
50.0	60.0		(CL)	50.5 -	E) E	166
50.0	00.0	Clay, low to moderate plasticity, moist, brown, 25% moisture	(CL)	55.5	56.5	
60.0	75 6	Sand, silt and cobbles, gravel, sand	(SM)	60.5	A STATE OF THE PARTY OF	
00.0	75.0	well-graded, w/12-15% fines (silty)	(SA)	75.0	75.5	
		low perm, brown-gray, glacial till		,,,,	13.3	,,,
		tom perma, browningray, gracial citi				

DRILL H	OLE 8,	£ DAM STA 13+70, ELEV 544.1				
0.0	6.0	Sand, well graded w/trace gravel and (SW-SM)	0.5	- 1.5	7
		5-10% fines, orange-brown, wet	~		- 3.5	
				4.5	- 5.5	44
6.0	11.0	Silt, low to moderate plasticity,	(ML)	6.5		
		moist, brown				
11.0	13.0	Sand, clayey, w/30-40% low plastic clay	, (SC)	11.5	- 12.5	86
		sand well-graded, trace fine gravel,				
		grayish brown				
13.0	19.0		(CL)	16.5	- 17.5	62
10.0	10.0	sand and silt, gray				
19.0	19.9	Boulder	a - cu)	21 6	- 22 5	106
19.9	29.8	Sand, silty, well-graded, trace (gravel, w/10-12% fines	5W-5M)		- 22.5 - 27.5	
29.8	31.0	Boulder		20.5	21.5	0)
31.0	36.0	Sand, clean, med., poorly graded,	(SP)			
	,	gravel	(3.)			
36.0	38.0	Clay, low to moderate plasticity,	(CL)	36.5	- 37.5	85
		brown				
38.0	40.0	Boulder				
40.0	50.0	Clay, low to moderate plasticity,	(CL)	40.5	- 41.5	81
		brown, moist			- 43.5	64
					45.5	52*
					- 47.5	35*
				48.5	49.5	27*
DRILL H	OI F Q	E DAM STA 14+20, ELEV 541.8				
0.0	0.5	Topsoil, silty sand, brown	(SM)			
0.5	3.5	Sand, silty, w/12-15% low plastic	(SM)	05.	1.5	3
•.,	3.7	silt, sand fine to med., low plas.	(3.1)	2.5		21
		trace gravel, moist, brown				
3.5	12.0	Silt, low plastic, w/traces of clay,	(ML)	4.5 -	5.5	30
		sand and gravel, brown low perm.			7.5	42
12.0	19.0	Sand, clayey, w/20-30% low plastic clay	(SC)	16.0 -	17.0	33*
		sand well graded, grayish-brown				
19.0	20.5	Sand, clean, well graded, permeable	(SW)			
20.5	22.0	Boulder, cobbles				
22.0	23.5	Sand, clean, med. to coarse, gravelly,	(SP)	22.5 -	23.5	46
22 5	20.0	permeable	/cu)	27 5	- no r	20
23.5	30.0	Sand, silty, w/30-40% low plastic fines,	(2M)	41.5	28.5	39
		sand well graded, trace gravel, moist, brown				
30.0	37.0	Sand, silty, w/12-15% fines, sand well	(SM)	32.5 -	33.5	94
,	,,,,	graded, trace gravel, wet	(311)	,,	33.3	
37.0	50.0		(SM)	37.5 -	38.5	115
		graded, dense boulders 44-48 feet,			43.5	
		glacial till			49.5	

DRILL H	OLE 10	, & DAM STA 15+20, ELEV 551.2				
		Sand w/8-12% fines, well-graded,	(SJ-SH)	0.5 -	1.5	19
0.0		angular gravel, silty fines	(311 311)	2.5 -		
		angular graver, strey rines		4.5 -		
				6.5 -		
11.0	15.0	Clay, low to moderate plasticity,	(CL)	10.5 -		
		silty, brown, moist				
15.0	21.0		(CL)	15.5 -	16.5	44
		silty, gray, moist.				
21.0	24.0	Clay, low to moderate plasticity,	(CL)	21.5 -	22.5	47
		silty, brown, moist				
24.0	30.0	Sand, w/8-12% silty fines, well	(SW-SM)	26.5 -		
		graded, gravelly		28.5 -		
30.0	37.0	Silt, low plastic, brown, moist	(ML)	33.5 -		
				35.5 -		
37.0	4		(ML)	37.5 -	38.5	61*
		sand-fine 5-15%, moist				
DRILL H	OLE 11	, & DAM STA 15+75, ELEV 571.7				
0.0		Sand, silty, damp, brown, w/15-20%	(SM)	0.5 -	1.5	18
		fines, well graded gravelly, glacial	,,	2.5 -		
		till		4.5 -		
				6.5 -		
8.6	17.0	Sand, moist, brown, silty, w/5-12%	(SM-SP)	11.5 -		
		fines, fine to med.		16.5 -		
17.0	31.0	Clay, moist, brown, moderate plastic	(CL)			
			,,	26.5 -		
31.0	40.0	Clay, moist, gray, moderate plastic	(CL)			
				36.5 -		39
				38.5 -		62
40.0	49.6	Sand, moist, w/10-12% low plastic	(SW-SM)	42.5 -		
		fines, well-graded, gravel, cobbles,		48.5 -		76
		boulders, low perm., dense				
	60.0		(ML)	54.0 -		
60.0	63.0	Sand, silty, w/12-15% low plas. silt,	(SM)	60.5 -	61.0	77*
		low perm., sand-fine, poorly graded				
63.0	72.0	Sand, moist, brown, w/12-15% fines,	(SM)	65.5 -		40*
		silty, gravel, cobbles, small boulders		71.5 -	72.0	35*
		glacial till				
DRILL H	OLE 12	, & DAM STA 17+00, ELEV 576.1				
0.0	1.0	Topsoil		0.5 -	1.5	5
1.0		Sand, silty, w/15-25% fines, some	(SM)	2.5 -		35
		gravel, brown, moist	(5)	4.5 -		29
				6.5 -		31
				11.5 -		
16.0	23.0	Clay, moist, gray, low plastic	(CL)			
		and the second s	(00)	21.5 -	22.5	36
						,

DRILL HO	DLE 13	, & DAM STA 18+00, ELEV 579.4				
0.0	1.0	Topsoil		0.5 -	1.5	9
1.0			(SM)	2.5 -		43
		gravel ly	,,		5.5	29
		g.eve,		6.5 -		92
11.0	16.0	Sand, well-graded, brown, 10-15% silt,(CM2-W			45
	10.0	little gravel	3M-3M	11.5	12.5	7,
16.0	22 0		/cul	16.5 -	17 5	38
16.0	23.0	Sand, well-graded, 12-15% fines, silty,	(2M)			
		gravelly, w/silt lenses	1001	21.5 -		19
23.0	35.0		(SP)	26.5 -		24
		of silt; poorly graded		31.5 -		11
35.0	45.0	Clay, moist, brown, low plastic	(CL)	36.5 -		53
				41.5 -	42.5	51
45.0		Clay, moist, gray, low plastic	(CL)	46.5 -		R
51.0	70.0		GW-GM)	51.5 -		88*
		cobbles, sand well-graded, 50-60%		55.5 -		58
		gravel		60.5 -		R
				65.0 -	66.5	R
70.0	72.0	Sand, silty, w/15-25% fines, some	(SM)	70.5 -	71.5	46*
		gravel, well graded, dense, orange-				
		brown glacial till				
DRILL H	NE 1/	, & DAM STA 19+00, ELEV 579.5				
and the second second						
0.0	0.6					
0.6	5.0	Silt, low plas., traces of sand & clay	(ML)		1.5	
				2.5 -		26
				4.5 -	5.5	40
5.0	10.0	Sand, very fine, silty, w/10-12%	SP-SM)	6.5 -	7.5	46
		fines, moist, brown, low perm.				
10.0	18.0	Clay, low plas., brown to gray	(CL)	11.5 -	12.5	43
		brown		16.5 -		
DRILL HO	DLE 15	, & DAM STA 20+10, ELEV 582.0				
0.0	0.6					
0.6	2.0		(ML)	0.5 -	1.5	9
0.0	2.0	20-30% sand, moist brown	(112)	0.5		,
2.0			(SM)	2.5 -	3.5	46
2.0	4.0		(3m)	2.5 -	3.5	40
		sand well-graded, trace gravel, brown,				
100		low perm.	1001	4.5 -		1.0
4.0	8.0		(20)			
		well-graded sand, trace gravel, brown,		6.5 -	7.5	99
		low perm.		4.0		
8.0	18.0	Sand, clayey, w/20-30% low plas. fines,	(SC)	11.5 -	12.5	45
		well-graded sand, trace gravel, gray-		16.5 -	17.5	43
		brown, low perm.				
18.0	28.0	Sand, clayey, w/20-30% low plas. fines,	(SC)	21.5 -	22.5	63
		well-graded sand, trace gravel, gray,		26.5 -	27.5	55
		low perm.				
28.0	45.0	Clay, low plas., gray	(CL)	31.5 -	32.5	45
				36.5 -		1
				42.5 -	43.5	70
45.0	50.0	Boulders & cobbles				
50.0		Sand, silty, w/15-25% fines, brown,	(SM)	50.5 -	51.5	27*
		trace gravel, low perm.		55.5 -		30*
*300 1h	hamme	r used on sampler				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·		N. C.		- C- Y	

				7	etrati	
				Depth	Blows	/foot
DRILL H	OLE 20	1, 50" RIGHT, & DAM STA 25+05, ELEV 592.	7			
0.0		Topsoi l				
0.5		Sand, clayey, w/40-50%, low plas. fines	(SC)	0.5 -	1.5	12
		sand fine to med, dense, brown glacial		2.5 -		
		till		4.5 -		
				6.5 -		77 51
				16.5 -		
19.0	25.5	Clay, low plastic, gray	(CL)	21.5 -		
25.5		Sand, clayey, w/40-50% low plastic	(sc)	26.5 -		R
		clay, fine to med, dense, brown,		31.5 -		
		glacial till		35.0 -	36.0	56*
DRILL H	OLE 20	2, 315' RIGHT, & DAM STA 24+30, ELEV 592	2.0			
0.0		Topsoi 1				
0.6	2.0	Silt, sandy, brown, low plastic, sand poorly-graded	(SM-SP)	0.5 -	1.5	6
2.0	11.0		(sc)	2.5 -	3.5	38
		trace gravel, fine to med. glacial		4.5 -		29
11.0	27.0	till	(ce)	6.5 -		15
11.0	2/.0	Sand, clayey, w/40-50% fines, gray, trace gravel, fine to med., glacial	(sc)	16.5 -		
		till		21.5 -		
				26.5 -		
27.0	28.0	Clay, low plastic, gray	(CL)			
DRILL H	OLE 30	1, 75" LEFT, & DAM STA 14+70, ELEV 541.5	į			
0.0	2.0	Silt, sandy, w/trace organic, dark gray	(ML)	0.5 -	1.5	0
2.0	4.0		(SW-SM)	2.5 -	3.5	12
4.0	15.0	graded soft, gray	(ML)	4.5 -	5.5	42
4.0	15.0	Silt, sandy, w/15-30% fine to med. sand, low to moderate plastic, gray,	(1112)	6.5 -		
		dense moist, cobble @11'		11.5 -		
15.0	21.5	Sand, clean, fine to med. water- bearing	(SP)	15.5 -	16.5	93
21.5	29.0	Silt, low plas., w/traces of fine sand,	(ML)	21.5 -	22.5	43
		brown		26.5 -	27.5	48
29.0	30.5	Sand, silty, w/15-20% silt, sand well-	(SM)			
		graded, cobbles, boulders, low perm.				
30.5	34.0	Boulder				
34.0	44.0	As 29-30.5 w/trace of gravel &	(SM)	34.5 -		
		cobbles	/w. \	40.5 -		
44.0	50.0	Silt, sandy w/10-15% sand, low plas.,	(ML)	45.5 -		
		dense, brown		7/.5	40.5	OIX

Standard

						tandard etration	
					Depth	Blows/fo	ot
0	RILL H	OLE 30	2, & DAM STA 14+60, ELEV 542.6				
	0.0	3.5	Sand, silty, w/12-15% fines, well graded, w/scattered cobbles, gravel	(SM)	0.5 - 2.5 -		
	3.5	4.0	Silt, sandy, low plastic, trace fine sand & gravel	(ML)			
	4.0	14.0	Sand, clayey, w/30-40% low plas. clay, brown, sand well graded	(sc)	4.5 - 6.5 - 10.5 -	7.5 46	,
	14.0	27.0	Sand, w/12-20% low plastic silt, and silty sand, poorly stratified, trace o gravel	(SM)	16.5 - 20.5 - 25.5 -	17.5 93 21.5 50	3
	27.0	30.0	Silt, w/traces of sand, low plastic, brown	(ML)	27.5 -		
	30.0	35.0	Sand, silty, w/20-30% low plastic fines, sand well graded, w/trace grave	1 (SM)		31.5 44	
	35.0	37.0	Sand and gravel, clean, water-bearing	(SP)	35.5 -		1
	37.0	50.0	Sandy, silty, w/20-30% fines, sand well graded, gravel, angular glacial till	(SM)	40.5 - 45.5 -	41.5 60 46.5 127	
	50.0	60.0	Cobbles, boulders w/matrix of silty sand	(GM)	50.5 -	51.5 55	
	60.0	62.0	Sand, silty, well graded 30-40% silt, fine to med. sand, very loose, wet	(SM)			
	62.0	64.0	Sand, silty, well graded, w/gravel, w/20-30% silt, wet	(SM)	62.5 -	63.5 13	}
	64.0	66.0		(SM)	64.5 -	65.5 43	1
0	RILL H	OLE 30	3. 70' RIGHT, & DAM STA 14+70, ELEV 542	.6			
	0.0	6.0	Sand, w/8-12% low plas. silt, well graded w/trace of gravel, cobbles	(SW-SM)	0.5 - 2.5 - 4.5 -		
	6.0	16.0	Sand, clayey, w/25-35% mod. plastic fines, well-graded sand, trace gravel brown, dense	(sc)	6.5 -	7.5 50)
	16.0 17.5	17.5 35.5		(CL) (SM)	16.5 - 21.5 - 26.5 - 32.5 - 34.5 -	22.5 71 27.5 73 33.5 102	

*300 1b hammer used on sampler

			Standar Penetrati Depth Blows	on
DRILL H	IOLD 30	4, 150' RIGHT, & DAM STA 14+70, ELEV 540.2		
0.0	2.5) 2.5 - 3.5 4.5 - 5.5 6.5 - 7.5	12 26 20 27
		Sand, w/12-15% silty fines, well graded (SM sand, layers of clean sand, mod. to low perm.	10.5 - 11.5) 15.5 - 16.5 21.5 - 22.5	58 79 68
26.0	27.5	Boulder		
27.5	31.0	Sand, clean, permeable (SP) 28.0 - 29.0	90
31.0		Boulders	,	•
35.0		Sand, silt, w/20-30% silt well graded, (SM glacial till) 35.5 - 36.5	82
DRILL H	OLE 50	1, 140' RIGHT, & DAM STA 14+10, ELEV 541.6		
0.0		Silt, sandy, w/trace organic, wet, (ML soft, brown-gray) 0.5 - 1.5	1
2.0	5.0	Sand, gravelly, silty, w/30-40% gravel (SM & 10-14% low plas. silt, well graded,) 2.5 - 3.5 4.5 - 5.5	50 45
5.0	10.0	low perm., gray Sand, silty, w/25-35% low plas. fines, (SM well graded, trace gravel, brown	6.5 - 7.5	20
10.0	26.0	Sand, silty, w/12-15% low plastic fines, (SM trace gravel, well graded	15.5 - 16.5	74
26.0	30.0	Sand, silty, w/20-30% low plastic (SM) fines, trace gravel, cobbles, well graded, low perm., glacial till	21.5 - 22.5 26.5 - 27.5	46 43
		graded, for permandiation that		
DRILL H	OLE 50	2, 170' RIGHT, & DAM STA 15+35, ELEV 553.3		
0.0		Sand, damp, brown, silty, w/15-25% (SM) fines, trace gravel, well graded glacial	0.5 - 1.5 2.5 - 3.5	13 49
		till	4.5 - 5.5	38
		Clay, sandy, low plastic, w/thin lenses (CL) of fine to med. sand	6.5 - 7.5	24
11.0	28.0	Clay, sandy, w/15-40% well graded sand (CL) and silt, sometimes stratified, brown and gray, low plastic	16.5 - 17.5	53
28.0	36.0	Sand, w/8-12% fines, silty, brown, (SW-SN some gravel well graded		61
		Boulders, w/matrix of sand, gravel and silt		
40.6	58.0	Sand, silty, w/10-12% fines, (SW-SM some gravel well graded	1) 41.0 - 42.0 43.0 - 44.0 48.5 - 49.5 1 55.0 - 55.5	80* 49
58.0	60.0	Sand, silty, w/20-40% fines, well (SM) graded, w/trace gravel, till		

Penetration Depth Blows/foot DRILL HOLE 601, 70' RIGHT, & DAM STA 11+90, ELEV 550.8 0.0 0.8 Topsoil 0.8 10.0 Sand, silty, w/12-15% silt, well (SM) 0.5 -1.5 12 graded, gravel, brown 2.5 -3.5 25 4.5 - 5.5 39 6.5 - 7.58.5 - 9.5 71 10.0 14.0 Sand, clayey, sand fine to med., 10.5 - 11.5 (SC) 25 w/15-30% plastic clay, low perm. 12.5 - 13.5 36 gray streaked with brown 14.0 18.0 Sand, fine to med. poorly graded, 16.5 - 17.5 (SM) w/10-15% fines, brown 18.0 38.0 Sand, silty, w/12-15% fines, well-(SM) 21.5 - 22.5 64 graded, brown, glacial till 26.5 - 27.5 131 31.5 - 32.5 84 36.5 - 37.5 98 DRILL HOLE 602, 95' RIGHT, & DAM STA 13+00, ELEV 547.5 0.0 .6x0 Topsoil .6,0 28.0 Sand, silty, well-graded, fine to (SM) 0.5 - 1.5 11 coarse sand, w/trace of gravel, 2.5 -3.5 52 w/12-15% silty fines, glacial till 4.5 -5.5 88 6.8 - 7.5 5110.5 - 11.5 40 15.5 - 16.5 44 20.5 - 21.5 33 25.5 - 26.5 110 28.0 31.5 Boulder 31.5 40.0 Sand, silty, well-graded, fine to (SM) coarse sand, w/trace of gravel, w/15-20% silty fines, glacial till 35.5 - 36.5 40 DRILL HOLE 603, 80' RIGHT, & DAM STA 13+60, ELEV 543.5 0.0 15.0 Sand, silty, brown, well-graded, (SM) 0.5 - 1.5 16 w/traces of cobbles and gravel, 10.5 - 11.5 87 w/12-15% silt (variable to 8-12%) alluvium 15.0 26.5 Sand, well-graded med. to fine, clean 15.5 - 16.5 55 (SP) water-bearing, permeable, alluvium 20.5 - 21.5 73 25.5 - 26.5 26.5 35.0 Sand, silty, w/12-15% fines, well (SM) 30.5 - 31.3 140 graded, low perm., brown, till 35.0 37.0 Sand, silty, w/12-15% fines, well (SM) 35.5 - 36.5 162 graded, gray, low perm., glacial till

Standard

0

Standard Penetration Depth Blows/foot

DRILL	IOLE 60	14, 75' RIGHT, & DAM STA 14+30, ELEV 541	.2			
0.0	4.5	Sand, fine to med., w/5-10% silty	(SP-SM)	0.5 -	1.5	3
		fines, poorly graded, gray-brown		2.5 -	3.5	22
4.5	5.5	Sand, clayey, w/20-30% fines, well graded	(sc)	4.5 -	5.5	35
5.5	6.0		(CL)			
6.0		Sand, clayey, well graded, w/20-40%	(sc)	6.5 -	7.5	28
0.0	.4.0	fines, trace gravel	(30)		9.5	
		tines, trace graver		10.5 -		
14.0	22.0	Sand, w/5-12% silty fines, well	(SW-SM)			
		graded, trace of gravel, angular,	,	21.5 -	22.5	108
		permeable				
22.0	32.5		(SW-SM)	26.5 -	27.5	R
		graded, mod. to low perm.		31.5 -	32.5	40
32.5	47.0		(SM)	36.0 -		R
		gravel, cobbles, boulders; orange-		41.5 -	42.5	58*
		brown, glacial till		46.5 -		R
	OLE 60	5, 60' RIGHT, & DAM STA 14+90, ELEV 552	.8			
0.0	2.0		(SM)	0.5 -	1.5	6
		fines, gravelly				
2.0	11.0	Sand, silty, w/20-30% low plastic				
		silt, well graded, brown, glacial till	(SM)	2.5 -		7
				4.5 -		22
				6.5 -		18
11.0	26.0	, , , , , , , , , , , , , , , , , , , ,	(CL)	11.5 -		36
		of sand and gravel at top		16.5 -		
26 0	27.0		/m/ m/	21.5 -		
26.0	37.0	Sand, silty, moist brown, well graded	(SW-SM)			
		w/8-12% fines, gravel, silt lenses, dense		31.5 -	32.5	74
37.0	42.0	Silt, sandy, brown, sand-fine, poorly graded	(ML)	37.5 -	38.5	72
42.0	64.6	Sand, moist, brown, silty, w/15-25%	(SM)	42.5 -	43.5	163
		fines, sand well graded, gravel, small		47.5 -	A STATE OF THE STA	Actual Section Co.
		boulders, glacial till		53.5 -		
				58.5 -		53*
				63.5 -	64.5	99

*300 1b hammer used on sampler

Standard Penetration Depth Blows/foot

DRILL	IOLE 70	11, 75' LEFT, & DAM STA 11+95, ELEV 548	3.4			
0.0	4.0	Silt, sandy, w/organic material, soft	(ML)	0.5 -		
4.0	5.0	Boulder		2.5 -	3.5	0
5.0	15.0	Sand, silty, well-graded, fine to	(SM)	5.5 -	6.5	145
15.0	18.5	Coarse sand, with trace of gravel Sand, fine to med. well graded, w/5-	/cn-cu\	10.5 -		
		10% fines	(SP-SM)	17.5 -		
18.5	28.0	Sand, silty, well-graded, w/15-20% fines	(SM)	20.5 -	21.5	34
28.0	32.0	Sand, well-graded, w/trace of	(SP-SM)	25.5 -		
		gravel, w/5-10% fines	(3. 3.1)	,0.,	31.5	50
32.0	37.0	Sand, well-graded, w/15-20% fines, till	(SM)	35.5 -	36.5	126

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE Somerset, New Jersey 08873

DEC 1 4 1978

DETAILED GEOLOGIC INVESTIGATION OF FURNACE BROOK SITE 2

LLR

General

State of New Jersey Watershed - Furnace Brook Site No. 2

Location - Warren County Fund Class - (WP-08) 2013

Hazard Class - C

Investigated by:

lan R. Walker, Geologist

Drill Holes

Date: 4/8/69-7/16/69 Date: 7/14/69-7/31/69

Test Pits Analysis and Report

Date: 10/1/69

Equipment used: Drill holes: Sprague and Henwood

Skid machine with 13/8 inch diameter split-

barrel sampler

Test pits:

Backhoe

Site Data

Drainage area size:

2.9 square miles 1,857 acres

Type of Structure:

Earth Dam

Purpose of Structure:

Flood water retarding, sediment storage

and recreation

Storage Allocation

	Volume (Acre Feet)	Surface Area (Acres)	Depth at Dam (Feet)
Sediment Floodwater Recreation	20 487 622	68 53	42 34
	Jest Dam Data		

Maximum height:

51.5 feet

1,680 feet

Location of emergency spillway:

Right abutment

Volume of fill:

177,000 cu. yds.

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET 1 OF 17

DATE

SURFACE GEOLOGY AND PHYSIOGRAPHY

Physiographic area: Highlands

Topography: Right abutment

Upper Slope 3% Lower Slope 50% Left abutment 8%

Surface: steeply rolling

Relief: 700 feet

Width of flood plain: 350 feet

Geologic Formations and Surficial Deposits

Quaternary:

Recent: Alluvium

Silty sand, sand, gravel, and cobbles. Poorly stratified, low to moderate permeability. Underlies flood plain.

Pleistocene: Glacial till and interglacial fluvial and lacustrine deposits. An old till sheet everywhere overlies the bedrock. This deposit is in turn overlain by interglacial stream and lake deposits and finally by a second and younger till sheet.

> The older till is a dense, slowly permeable silty sand with traces of gravel, cobbles, and boulders. Sand in fine to medium with from 15 to 40% low plastic silt and clay. Fluvial deposits overlying the old till sheet are variously sorted and stratified sand, gravel and silty sand deposits of moderate to high permeability. Lacustrine deposits of dense, impervious, low plastic clay overly the fluvial deposits.

The lacustrian deposits are in turn overlain by more fluvial deposits of fine to medium sand and silty sand of low to moderate permeability.

A young till sheet of dense and slowly permeable fine to medium silty and clayey sand blankets both abutments.

Precambrian: Granitoid Gneiss

Fractured and moderately permeable granitorid gneiss underlies the upper side of the left abutment at 20 feet and the right abutment and center of the site at

depths in excess of 75 feet.

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET_ 2 OF 11 DATE

Structure

The Granitoid Gneiss is fractured and weathered for at least twenty feet below its surface which is buried beneath thick glacial and interglacial deposits. Generally the gneiss strikes northeast and dips to the southeast.

Evidence of Landslides, Seepage, Springs

There is no evidence of landslides or springs.

Seeps occur over a large area upstream of the dam on the left abutment; at the toe of the right abutment immediately upstream of the dam; and in a small area on the right abutment downstream of the dam.

The location and source of the seeps is shown on SCS-316B and SCS-316E. A discussion of the seeps is included under <u>Left Abutment</u> and <u>Right Abutment</u> in this report.

Sediment and Erosion

Average annual sediment delivery is expected to be 485.8 tons. The delivery rate to the reservoir will be 35 percent and a trap efficiency of 96 percent is expected. Total sediment storage allocation is 20 acre feet of which 17 acre feet will be submerged and 3 acre feet will be aerated. There is no change in these data from the work plan.

Downstream Channel Stability

The downstream channel is "paved" with a foot or more of gravel, cobbles, and sand.

SUBSURFACE GEOLOGY

EMBANKMENT FOUNDATION

Sixteen holes were drilled into the abutments and through the flood plain. The holes were sampled continuously by 1 3/8 inch split-barrel sampler for the top 8 to 15 feet and discontinuously thereafter every three or five feet. The deepest hole (D-7) was 75 feet deep and the shallowest hole (D-14) was 18 feet deep. Two backhoe test pits were dug on the dam center line. No undisturbed samples were collected.

Left Abutment

The left abutment is underlain by fractured gneiss, glacial till and a trace of interglacial silts and sands. All materials are generally

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET 3 OF 11

DATE

dense to very dense. One permeable zone of cobbles and boulders was found in D-4 (25 feet per day between 10 and 12 feet).

Permeabilities are about 5 fpd in the fractured and weathered gneiss which is overlain by cobbles and boulders (permeability of 5.4 fpd) and at least 20 feet of glacial till Gneiss is generally at least fifty feet below the surface in the left abutment.

Glacial till in the left abutment is slowly permeable but the till is not homogeneous and contains scattered pockets and stringers of permeable sand, gravel, cobbles and boulders (as in DH 4, 10-12 feet).

Permeable interglacial sands and gravel occur near the surface immediately upstream of the dam center line in the left abutment (SCS-316B and SCS-316E). Seeps eminating from this deposit are believed to be supplied with ground water from the fractured gneiss (SCS-316E) and buried interglacial deposits.

Right Abutment

The right abutment is underlain by dense but variously permeable glacial till, fluvial sands, gravels, and silt and lacustrine clay. Bedrock was not found to depths of 72 feet beneath the right abutment.

Glacial till of low permeability (less than 0.2 fpd) occurs under and over the interglacial deposits. The till is a low plastic clayey or silty fine to medium angular sand containing scattered gravel, cobbles and boulders.

Permeable (to 18 fpd) sand and gravel deposits occur at depths of 40 to 50 feet beneath the abutment. Those deposits are discussed under Center Section of Center Line of Dam.

A dense, nearly impermeable low plastic clay overlies the permeable sand and gravel deposits.

Interglacial sand and silty sand covers some of the deeply eroded surface of the interglacial clay (SCS-316C). One channel fill deposit (SCS-316E, D-12, D-13, D-14) passes nearly through the right abutment. A 9-12 foot cover of dense and slowly permeable glacial till (T-603 to T-609, SCS-316A) blankets the sand in the normal pool area. The channel deposit is a fine to medium poorly stratified sand containing generally less than 12 percent low plastic silt.

Seepage in the right abutment 250 feet downstream from the toe of the dam is believed to originate in this buried channel deposit.

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET

DATE

Perennial seepage at the base of an abandoned sand pit just upstream of the center line of the dam (SCS-316B) originates in buried fluvial deposits in the right abutment (See Section A-A, SCS-316E). This deposit beneath the right abutment is of limited areal extent (SCS-316B).

Water levels in drill holes in the right abutment show ground water levels consistent with the geologic setting. A shallow or perched water table occurs within the root zone of the surficial glacial deposits. This water percolates downward to collect in the interglacial sand above the thick clay. Ground water in this sand is discharged through the abandoned sand pit, through seeps downstream of the toe of the dam, and very slowly through the underlying clay to the deeply buried fluvial sand and gravels. The deep sand and gravels are in turn drained by seepage upward to Furnace Brook beneath the center section of the dam center line.

Center Section of Center Line of Dam

Six drill holes were completed along the center section of the center line of the dam. The deepest was 75 feet deep.

This part of the dam is underlain by Recent alluvium, interglacial clays, silts, and sands, and glacial till.

The Recent alluvium is predominately coarse-grained and highly variable in texture and permeability. The alluvium is less than six feet thick on the right side of the flood plain and is 15 feet thick in a 100 foot wide channel on the left side of the flood plain.

Beneath the Recent alluvium is a nearly continuous (except on the left side) 9 to 18 foot thick layer of dense and slowly permeable low plastic clay, silt, and clayey sand.

Beneath the silt and clay is a buried interglacial channel containing deposits of sand and silty sand of variable permeability. These deposits extend laterally beneath the right abutment.

These deposits are very dense (SCS-316C). Permeabilities in clean poorly graded medium to coarse sands are in excess of 100 fpd but values of 15 to 25 fpd for the entire deposit are probably conservative. Horizontal permeabilities are far greater than vertical permeabilities.

The buried channel deposit continues downstream beneath the dam (SCS-316B and 316D) and the right abutment.

The buried channel deposit is underlain by dense and slowly permeable glacial till which in turn lies on gneiss at a depth in excess of 75 feet.

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET 5 OF 11

DATE_

PRINCIPAL SPILLWAY

Four drill holes were completed along the center line of the principal spillway (SCS-316D).

In all cases the material below the surficial alluvium (3-6 feet) is dense. The buried channel which passes beneath D-303 is filled with dense fluvial deposits.

The deposits beneath the principal spillway are continuous beneath the center line of the dam and are discussed above under <u>Center Section of Center Line of Dam.</u>

EMERGENCY SPILLWAY

Two drill holes and sixteen test pits were completed in the emergency spillway. Disturbed samples were collected from both drill holes and from six test pits.

The 209,000 cubic yards of material (glacial till) in the emergency spillway is fine to medium sand with from 30 to 60 percent low plastic clay. The material (glacial till) is dense, moist and easily excavated with a backhoe. Scattered cobbles and a very few boulders were found in test pits. Cobbles and small boulders are common and, in some areas, numerous on the surface and within a foot of the ground surface.

The glacial till in the emergency spillway is virtually impermeable. A perched water table was found within the upper few feet of soil where root openings create a path for ground water movement. The quantity of water in this zone is not large and is directly dependent upon frequent rains.

No bedrock was found in two holes drilled 16 and 30 feet below the bottom of the center line of the emergency spillway.

BORROW AREAS

Borrow for the embankment will be taken entirely from the emergency spillway and is discussed above under EMERGENCY SPILLWAY.

General Description of Borrow	USCS	Location	Volume (c.y.)
Sand, fine to medium; 30 - 60% low pastic clay; scattered gravel cobbles and boulders; dense, moist, glacial till	sc	Emergency Spillway	209,000

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET 6 OF 11

RELIEF WELL EXPLORATION

Three drill holes were completed near the toe of the dam (SCS-316A and 316D, D-501, D-304, and D-502). The permeable buried channel deposits pass beneath the right abutment just upstream of the toe of the dam (SCS-316B).

Permeable sand was found at 20 feet and at 28 feet below the surface in D-304. These deposits are water-bearing and act as drains for the buried channel deposits which extends upstream beneath the pool area and beneath the right abutment. Samples for use in relief well design were not collected in this investigation.

RIPRAP

Hard, dense and durable rock is available from the surface of the emergency spillway in sizes ranging from cobbles to boulders to 18 inches in diameter. Six to eight thousand cubic yards of riprap are available on the surface and in fence rows in the emergency spillway.

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

ACCESSAGE:

DRAWING NO.

SHEET 7 OF 11

DATE

INTERPRETATIONS AND CONCLUSIONS

The site is located in a valley carved into granitic gneiss and partially filled with glacial till, interglacial sand, silt and clay, and Recent alluvium.

The bedrock occurs at considerable depth beneath the unconsolidated deposits and, except in part of the left abutment where seeps originate in the rock, has little influence upon the structure.

Deep buried channel deposits are permeable and scattered discontinuous permeable zones occur within the generally very slowly permeable glacial till.

The following conditions are considered important to design and construction:

- Buried channel deposits beneath the center section of the dam are continuous up and down stream.
- The principal buried channel beneath the center section of the dam passes beneath the right abutment just upstream of the point of intersection of the stream and the toe of the dam.
- 3. The highly variable nature of the buried channel deposits dictates that samples for relief-well screen and/or gravel pack design be obtained from test wells at the site of the permanent relief wells. Samples will be difficult to obtain unless the artesian water level in the channel deposits is first lowered below the ground surface.
- 4. Silt and clay layers beneath the center section of the dam and the right abutment are dense and vary slowly permeable.
- 5. With the exception of thin surficial alluvial deposits beneath the flood plain the material beneath the structure is dense to very dense.
- 6. When a cutoff trench is constructed through the surficial alluvium beneath the center line a careful inspection should be made of the glacial till in the left abutment to detect and treat pockets or stringers of permeable material.
- 7. Unless treated during construction, the seeps in the base of the abandoned sand pit will interfere with the placement of fill at the base of the right abutment.
- 8. The upper buried alluvial channel which passes through the right abutment is effectively blanketed naturally in the normal pool area but without a blanket seepage will take place through the abandoned sand pit and into the buried channel deposit. Jan Walker Geologist

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

DRAWING NO.

SHEET 8 OF 11

ENGINEERS REPORT

0F

PROPOSED TREATMENTS

- During the site investigation numerous field drains were located at depths less than one foot. The entire area under the base of the dam will be cleared, grubbed and stripped to a depth of one foot. The stripping will cut off any field drains that might run under the embankment.
- 2. The right abutment has been subjected to borrowing operations which have resulted in steep irregular slopes. On the right abutment where the existing slope is greater than 3 to 1, it will be cut back to 3 to 1 under the embankment.
- 3. Right abutment: seepage control

Two problems exist in the right abutment: (1) The sand pocket shown on sheet 316 B and, (2) the buried channel running under the right abutment, also shown on sheet 316 B.

The sand pocket has been exposed in the pool area by past borrowing operations. Due to the high head and short seepage path together with the fact that the limits of the pocket as shown on sheet 316 B are not definite, it is believed that the use of a cut off is desirable. (See Sheet 316 CE and 316 AE)

A check with the blanket aquifer method showed that the use of a blanket alone was not sufficient to handle the problem of seepage through the sand pocket. However, a blanket is being placed over the exposed borrow area since it provides a path for seepage to the buried channel. (See sheets 316 B and 316 E for problems and 316 AE and 316 CE for Solution.) It is also shown on sheet 316 E that the buried channel has a natural blanket (is pinched off) in the pool area and, therefore, no blanket is required on its upstream end.

- 4. Valley Floor: Recent Alluvium
 The Recent Alluvium will be cut off as shown on sheet 316 CE and
 316 CE.
- 5. Valley Floor: Deep Deposits A check by the blanket aquifer method shows uplift pressures to be significant. The present thought is for the use of relief wells to handle this problem. Since we were unable to obtain samples of material into which the wells will be placed,

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET 9 OF 11

screen size and material gradations will have to be determined during construction. Location has also <u>not</u> been decided on. The wells will penetrate down into the interglacial fluvial deposits. Note on sheet 316 D on the section 150 feet downstream from the center line of dam that these deposits tend to neck down and move under the right abutment. Our belief is that this would be a good location to place the wells but we would appreciate your comments.

6. Embankment and Left Abutment:

The Embankment will consist of a homogeneous fill. All borrow will be obtained from the emergency spillway. Under these conditions do you believe a chimney drain is desirable. The Embankment drain will connect to the trench drain and will run into both abutments. Investigation in the left abutment showed pervious layers (see sheet 316 C and 316 E). These layers seem to be discontinuous up and down stream. The drain will be run up the left abutment to pick up any of this water which may move through. See sheets 316 AE, 316 FE, and 316 GE.

Please comment on or provide the following:

- 1. Proposed method of handling foundation.
- Recommended location and design of relief wells, and their desirability.
- 3. Estimate total seepage loss through site.
- 4. If complete cutoff becomes necessary, due to water loss, what method of cutoff would you recommend. (Note this is a recreation site with a 53 acre lake.)
- 5. Structural Aspects of Site:
 The side slopes of 3:1 were proposed due to (1) The complexity
 of the sites foundation and, (2) the required emergency spillway
 excavation provides us with an excess of fill material.
- 6. Design of Drain:
 - (a) Comment on depth and extent of trench drain
 - (b) Design of Drain Fill Material
 The chimney drain will be entirely in the borrow material from the emergency spillway (Glacial Till).
 The trench drain will pass through the Recent Alluvium in the valley floor and predominately through glacial till in the abutments. (See sheet 316 FE.) Since no lenses of course material were located in the abutments during the site investigation the drain material will have to be designed with the glacial till as a base.

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE DRAWING NO.

SHEET 10 OF 11

DATE

If during construction lenses of course material are encountered, the design of the drain fill will have to be adjusted accordingly.

7. Numerous seeps exist along the left abutment in the pool area. (See sheet 316 B.) It is our belief that since the existing static head is almost as high (see D-1 on sheet 316 C) as that which we are going to produce by ponding water to the normal pool elevation of 579.0, a blanket will not be necessary. We would appreciate your comments on this.

Carl Montan

CARL MONTANA State Design Engineer

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

DRAWING NO.

SHEET 11 OF 1

OPERATION AND MAINTENANCE AGREEMENT FOR STRUCTURAL MEASURES

THIS AGREEMENT made on October 30 1968 is between the Soil Conservation Service, United States Department of Agriculture, hereinafter referred to as the Service, and the following organization(s), hereinafter referred to as the Sponsor: Township of Oxford The Sponsor and the Service agree to carry out the plan on the attached two pages for the operation and maintenance of structural measures in Furnace Brook Watershed Project, State of New Jersey The measures covered by this agreement are identified as: 1. Flood prevention =- recreation site on Furnace Brook approximately one mile upstream from Oxford. Basic recreation facilities. 3. 0.3 mile of Stream Channel Improvement extending from the D.L.&W. Railroad north of Oxford to just downstream from the Washington Ave. bridge. Name of Sponsor Township of Oxford Title Mayor This action was authorized at an official meeting of the Sponsor named immediately above on 10/30/68 at Waskington, E.J. Attest marie m. Beers Title Soil Conservation Service, United States Department of Agriculture Tickard W. Ukiliy Title STATE CONSERVATIONIST

OPERATION AND MAINTENANCE PLAN

I OPERATIONS

- A. The sponsor will be responsible for and will operate or have operated without cost to the Service the structural measures in compliance with any applicable Federal, State and local laws, and in a manner that will assure that the structural measures will serve the purpose for which installed as set forth in the Work Plan.
- B. The Service will, upon request of the Sponsor and to the extent that its resources permit, provide consultative assistance in the operation of the structural measures.

time) secure of importance tell belief that had been will

II MAINTENANCE: lo lobred a ni (messo volto de es est écoles mas le le sente est le propose est le mais le pairie

A. The Sponsor will: The state of the state

.... ti

- 1. Be responsible for and promptly perform or have performed without cost to the Service except as provided in Paragraph III, Establishment Period, all maintenance of the structural measures determined by either the Sponsor or the Service to be needed.
- 2. Obtain prior Service approval of all plans, designs and specifications for maintenance work involving major repair.
- B. The Service will, upon request of the Sponsor and to the extent that its resources will permit, provide consultative assistance in the preparation of plans, designs and specifications for needed repair of the structural measures.

III ESTABLISHMENT PERIOD

- A. During an Establishment Period, as herein defined, the Service will bear such part of the cost of any needed major repairs to the structural measures, including associated vegetative work, as is proportionate to the original construction costs borne by the Service in the construction of the structural measures except that the Service will not bear any of the cost for:
 - 1. Repairs to channels or portions thereof which do not have permanent linings such as concrete, riprap, or grouted rock.

III ESTABLISHMENT PERIOD (continued)

- 2. Repairs determined by the Service to have been occasioned by improper operation or maintenance, or both.
- 3. Repairs applicable to municipal or industrial water supply or to any other purpose for which construction costs are not authorized to be paid for in whole or in part with funds appropriated to the Service.
- 4. Repairs that are mutually determined by the Sponsor and the Service as being items of normal maintenance rather than major repair and are not therefore in keeping with the spirit and intent of the Establishment Period provisions.
- B. The Establishment Period for structural measures (exclusive of any associated vegetative work) is a period of three years ending at midnight on the third anniversary of the date on which the structural measure is accepted.
- C. The Establishment Period for vegetative work associated with a structural measure is a period from date of acceptance of the initial vegetative work to midnight of the date on which the Service writes the Sponsor advising that an adequate vegetative cover has been obtained. However, this period shall not exceed two growing seasons or the end of the Establishment Period for the associated structural measure whichever is greater in time.
- D. As used in the two preceding paragraphs, and elsewhere in this Plan, the following words have the meanings described below:

ACCEPTED, ACCEPTANCE: The date structural or vegetative measures are accepted from the contractor when a contract is involved, or the date structural or vegetative measures are completed to the satisfaction of the Service when force account operations are involved.

ADEQUATE VEGETATIVE COVER: A minimum of seventy percent (70%) cover of the desirable species, with no active rilling that cannot be controlled by the vegetation.

E. Major repair may involve such things as (1) repairing separated joints, cracks or breaks in the principal spillway, (2) correcting seepage, (3) replacing significant backfill around structures

III ESTABLISHMENT PERIOD (continued 2)

resulting from major erosion damage, (4) major revegetation due to failure to obtain an adequate vegetative cover, and (5) restoring areas with significant erosion caused by unusual flow (volume, recurrence or extended period of time) in emergency spillways.

F. No action with respect to needed repairs during the Establishment Period will be taken by the Sponsor or the Service which would lessen or adversely affect any legal liability of any contractor or his surety for payment of the cost of the repairs.

IV INSPECTIONS AND REPORTS

A. During the Establishment Period the Sponsor and the Service will jointly inspect the structural measures at least annually and after unusually severe floods or the occurrence of any other unusual condition that might adversely affect the structural measures. It is desirable the annual inspections be performed during the month shown below. Any supplemental inspections then determined necessary will be scheduled and agreed to at that time.

MAY

MAY

Month

Month

Note the second second to the second second

B. After the Establishment Period the structural measures will be inspected annually by the Sponsor, preferably during the month shown below, and after unusually severe floods or the occurrence of any other unusual condition that might adversely affect the structural measures.

MAY (Month)

- C. After the Establishment Period the Service may inspect the structural measures at any reasonable time.
- D. A written report will be made of each inspection. The report of joint inspections will be prepared by the Sponsor with the assistance of the Service. A copy of each report will be provided by the party preparing the report to the other party within ten days of the date on which the inspection was made.

RECORDS

The Sponsor will maintain in a centralized location a record of all inspections performed both individually and jointly by the Sponsor and the Service, and of all significant actions taken by the Sponsor with respect to operation and maintenance. The Service may inspect these records at any reasonable time.

VI GENERAL .

The Sponsor will:

1. Prohibit the installation of any structures or facilities that will interfere with the operation or maintenance of the structural measures.

- 2. Obtain prior Service approval of the plans and specifications for any alteration or improvement to the structural measures.
- 3. Obtain prior Service approval of any agreement to be entered into with other parties for the operation or maintenance of all or any part of the structural measures, and provide the Service with a copy of the agreement after it has been signed by the Sponsor and the other party.
- Service personnel will be provided the right of free access to the structural measures at any reasonable time for the purpose of carrying out the terms of this plan.
- C. The responsibilities of the Sponsor under this Plan are effective simultaneously with the acceptance of the works of improvement in whole or in part.

The state of the s

. . . .

VII SPECIAL PROVISIONS

Exhibit 2910

PROPERTY MANAGEMENT STANDARDS (Attachment to Operation and Maintenance Agreement)

The standards prescribed herein govern the utilization and disposition of property furnished by SCS or acquired in whole or in part with SCS-furnished funds by the sponsors. Sponsors are responsible for observing the standards set forth herein. Sponsors are authorized to use their own property management standards and procedures as long as the provisions set forth herein are included.

1. Definitions

- (a) Real property. Real property means land, land improvements, structures and appurtenances thereto, excluding movable machinery and equipment.
- (b) Personal property. Personal property means property of any kind except real property. It may be tangible -- having physical existence, or intangible -- having no physical existence, such as patents, inventions, and copyrights.
- (c) Nonexpendable personal property. Nonexpendable personal property means tangible personal property having a useful life of more than one year and an acquisition cost of \$300 or more per unit. A sponsor may use its own definition of nonexpendable personal property provided that such definition would at least include all tangible personal property as defined above.
- (d) Expendable personal property. Expendable personal property refers to all tangible personal property other than nonexpendable property.
- (e) Excess property. Excess property means property under the control of any federal agency which, as determined by the head thereof, is no longer required for its needs.

2. Use of Real Property

Sponsors shall use any real property acquired partly or wholly with SCS financial assistance, as long as heeded for the purpose for which it was acquired and in accordance with the O&M agreement. When the real property is no longer needed for the purpose of the SCS financial assistance, the sponsor shall obtain SCS approval of its plans for future use or disposition.

3. Use of Nonexpendable Personal Property

(a) Nonexpendable personal property acquired with federal funds. When non-expendable personal property is acquired by a sponsor wholly or in part with federal funds, title will not be taken by the federal government, but shall be vested in the sponsor subject to the following restrictions on use and disposition of the property:

Exhibit 2910

Page 2 of 4 pages, PROPERTY MANAGEMENT STANDARDS

- (1) The sponsor shall retain the property acquired with federal funds in the federally financially assisted program as long as there is a need for the property to accomplish the purpose of the program whether or not the program continues to be supported by federal funds. When there is no longer a need for the property to accomplish the purpose of the federally financially assisted program, the sponsor shall use the property in connection with other federal grants it has received in the following order of priority:
 - (i) Other grants of the SCS needing the property.
 - (ii) Grants of other federal agencies needing the property.
- (2) When the sponsor no longer has need for the property in any of its federal grant programs, the property may be used for its own official activities in accordance with the following standards:
 - (i) Nonexpendable property with an acquisition cost of less than \$500 and used four years or more. The sponsor may use the property for its own official activities without reimbursement to SCS or sell the property and retain the proceeds.
 - (ii) All other nonexpendable property. The sponsor may retain the property for its own use provided that a fair compensation is made to the SCS for the SCS share of the cost of the property. The amount of compensation shall be computed by applying the percentage of SCS participation in the SCS financially assisted undertaking to the current fair market value of the property.
- (3) If the sponsor has no need for the property, disposition of the property shall be made as follows:
 - Nonexpendable property with an acquisition cost of \$1,000 or less. Except for that property which meets the criteria of (2)
 (i) above, the sponsor shall sell the property and reimburse the SCS an amount which is computed in accordance with the last paragraph in (ii) below.
 - (ii) Nonexpendable property with an acquisition cost of over \$1,000. The sponsor shall request disposition instructions from SCS. The SCS shall determine whether the property can be used to meet a SCS requirement. If no requirement exists within SCS, the availability of the property shall be reported to the General Services Administration (GSA) by the SCS to determine whether a requirement for the property exists in other federal agencies. The SCS shall issue instructions to the sponsor within 120 days and the following procedures shall govern:

Page 3 of 4 pages, PROPERTY MANAGEMENT STANDARDS

If the sponsor is instructed to ship the property elsewhere, the sponsor shall be reimbursed by the benefiting federal agency with an amount which is computed by applying the percentage of the sponsor participation in the SCS financially assisted undertaking to the current fair market value of the property, plus any shipping or interim storage costs incurred.

If the sponsor is instructed to otherwise dispose of the property, he shall be reimbursed by the SCS for such costs incurred in its disposition.

If disposition instructions are not issued within 120 days after reporting, the sponsor shall sell the property and reimburse the SCS an amount which is computed by applying the percentage of SCS participation in the undertaking to the sales proceeds. Further, the sponsor shall be permitted to retain \$100 or 10 percent of the proceeds, whichever is greater for the sponsor's selling and handling expenses.

4. Other Requirements for Nonexpendable Personal Property

The sponsor's property management standards for nonexpendable personal property shall also include the following procedural requirements:

- (a) Property records shall be maintained accurately and provide for: a description of the property; manufacturer's serial number or other identification number; acquisition date and cost; source of the property; percentage of federal funds used in the purchase of property; location, use, and condition of the property; and ultimate disposition data including sales price or the method used to determine current fair market value 'f the sponsor reimburses SCS for its share.
- (b) A physical inventory of property shall be taken and the results reconciled with the property records at least once every two years to verify the existence, current utilization, and continued need for the property.
- (c) A control system shall be in effect to insure adequate safeguards to prevent loss, damage, or theft to the property. Any loss, damage, or theft of nonexpendable property shall be investigated and fully documented.
- (d) Adequate maintenance procedures shall be implemented to keep the property in good condition.
- (e) Proper sales procedures shall be established for unneeded property which would provide for competition to the extent practicable and result in the highest possible return.

Exhibit 2910

Page 4 of 4 pages, PROPERTY MANAGEMENT STANDARDS

5. Expendable Personal Property

When the total inventory value of any unused expendable personal property exceeds \$500 at the expiration of need for any federal grant purposes, the sponsor may retain the property or sell the property as long as it compensates SCS for its share in the cost. The amount of compensation shall be computed in accordance with 3(a)(2)(ii) above.

6. Intangible Personal Property

- (a) If any program produces patents, patent rights, processes, or inventions, in the course of work aided by a SCS financial assistance, such fact shall be promptly and fully reported to SCS. The SCS shall determine whether protection on such invention or discovery shall be sought and how the rights in the invention or discovery—including rights under any patent issued thereon—shall be disposed of and administered in order to protect the public interest consistent with "Government Patent Policy" (President's Memorandum for Heads of Executive Departments and Agencies, August 23, 1971, and Statement of Government Patent Policy as printed in 36 F.R. 16889).
- (b) Where the SCS financial assistance results in a book or other copyrightable material, the sponsor is free to copyright the work, but SCS reserves a royalty-free, nonexclusive and irrevocable license to reproduce, publish, or otherwise use, and to authorize others to use the work for government purposes.

Exhibit 2908.14

PROPERTY MANAGEMENT STANDARDS

Exhibit 2910 is attached and made a part of this agreement. It contains prescribed standards governing the utilization and disposition of property furnished by the Service or acquired in whole or in part with Service-furnished funds.

APPENDIX 2

CHECK LIST
VISUAL INSPECTION

FURNACE BROOK W.S. DAM 2

CHECK LIST VISUAL INSPECTION Phase I

NAME DAM Furnace Brook	COUNTY Warren	Warren	STATE New Jersey	COORDINATORS N.J.D.E.P.	N.J.D.E.P.
DATE(s) INSPECTION See below	WEATHER	Partly cloudy	WEATHER Partly cloudy TEMPERATURE 40° F		
POOL ELEVATION AT TIME OF INSPECTION 573.16* M.S.L.	PECTION 5		TAILWATER AT TIME OF INSPECTION 539.67* M.S.L.	INSPECTION 539.67	* M.S.L.
		levetione from dr	* Elevations from drawings provided by Coil Conservation Service	envisting Convice	

INSPECTION PERSONNEL:

DOWNSTREAM CHANNEL

CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	OBSERVATIONS Appears Satisfactory	REMARKS OR RECOMMENDATIONS
TIONS, ETC.)	rs Satisfactory	
Slopes eroded 1 to 2 ft.	eroded in more than two areas to depths of ft.	Eroded areas should be repaired.
APPROXIMATE NO. OF HOMES AND POPULATION	Approximately 10 homes (from USGS Topo Map). Population est. 30.	

EMBANKMENT

O

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	None Observed.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None Observed.	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	Erosion 1.5' deep along left to downstream of dam to outlet channel. Several 1" - 2" deep erosion trenches on downstream face.	Eroded area should be repaired. Small erosion trenches should be repaired.
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Appears Satisfactory.	
RIPRAP FAILURES	Riprap at north end of dam is incomplete. Riprap at auxiliary spillway is missing.	Riprap sizes to 3.5 ft diameter. Large pieces of riprap randomly placed.
2-3		

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
отнек	Several small animal burrow holes 2 inches to 4 inches in diameter.	Holes should be suitably filled.
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILL WAY AND DAM	Left abutment - ponding water in rut of toe of dam. At inlet of CMP leading to spillway discharge channel on downstream face, erosion of 6 inches in depth, 5 ft sq area.	Suitable drainage should be provided. Eroded area should be repaired.
ANY NOTICEABLE SEEPAGE	None Observed	
STAFF GAGE AND RECORDER	None Observed	
DRAINS	Two 5% inch drains at outlet structure operating. Appear satisfactory.	

OUTLET WORKS

CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT INTAKE STRUCTURE OUTLET STRUCTURE Left embankment/ 1 ft - 2.5 ft wide,		
	•pa	
	juate.	
	Left embankment/impact basin junction, erosion 1.5 ft deep, Eroded area should be repaired. 1 ft - 2.5 ft wide, 15 ft long. Large boulder abuting concrete.	Eroded area should be repaired. Boulder should be removed.
OUTLET CHANNEL Appears Satisfactory	sfactory	
EMERGENCY GATE None Observed	Pe	

	RESERVOIR	OBSERVATIONS REMARK OR RECOMMENDATIONS	Several small eroded areas. Eroded areas should be repaired.	ple		
0		VISUAL EXAMINATION OF	Several smal	SEDIMENTATION Not observable		

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATION:
CONCRETE WEIR	None. Auxiliary spillway is grassed.	
APPROACH CHANNEL	Appears Satisfactory	
DISCHARGE CHANNEL	Appears Satisfactory	
BRIDGE AND PIERS	None Observed	
:-7		

INSTRUMENTATION

MONUMENTATION/SURVEYS		
	None observed	
WELLS 21	2 large relief wells located downstream near impact basin.	
WEIRS	None Observed	
PIEZOMETERS Tw	Two open well piezometers observed and appear unused.	
отнея		

GATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATION
CONCRETE SILL	Appears satisfactory	
APPROACH CHANNEL	Piece of dead wood lodged in sluice gate on left side of spillway.	Wood should be removed.
DISCHARGE CHANNEL	Appears Satiisfactory	
BRIDGE AND PIERS	Wooden plank from riprap to spillway used for access.	More substantial walkway should be made.
GATES AND OPERATION EQUIPMENT	Operators appear satisfactory.	Wood log in gate should be removed.

PHOTOGRAPHS

View of dam and outlet structure. 14 December 1978 Looking downstream.

Upstream slope and riprap. 14 December 1978

View along dam crest. Looking south.

14 December 1978

View along dam crest. 14 December 1978 Looking north. Note ruts along crest.

Junction of dam and spillway 14 December 1978 inlet channel.

Deteriorated riprap at north end of dam below Buckley Ave.

14 December 1978

Gate operators at top of 14 December 1978 drop inlet spillway.

0

Impact basin and discharge 14 December 1978 channel.

Impact basin at end of principal 14 December 1978 spillway pipes

Crest of auxiliary spillway. 14 December 1978 Looking south.

Auxiliary spillway. Looking 14 December 1978 downstream.

Left side of auxiliary spillway. 14 December 1978

Animal burrow hole in downstream 14 December 1978 slope of dam.

Drainage ruts along downstream 14 December 1978 toe of dam.

HYDROLOGIC COMPUTATIONS

HYDROLOGIC COMPUTATIONS FURNACE BROOK DAM

Location: Warren County, N. J.

Drainage Area: 2-87 sq. mi.

Lake Area: 53 Acres

<u>Classification:</u> Size - Intermodiate Hazard - High

Spillway Design Flood:

Based on available information, the crost of the auxiliary spillway has been decigned on the besis of 100 yr storm determined from hydrographs produced by rainfalls taken from hydrologic maps based on U.S. Weather Bureau Technical Paper No. 40. This storm lequivalents to 8.4 inches of rainfall and has a peak inflow of 893 cfs.

The top of dam has been designed on the basis of a PMF determined from the freeboard hydrograph rainfall from ES 1020 Sh. 5 of 5. This flood equivalents to 25.3 inches of rainfall and has a peak inflow of 15888 cfs.

Spillway and Storage Capacity

0

The spillway for this dam consists of the principal spillway, a drop inlet riser which leads to 30° R.C.P., in the supstream side of center of dam and an auxilliary spillway which is a 500 ft grassed open channel in the right abutment of the dam. The date for the spillway discharge and received storage curves were provided to us by ses.

BY Py DATE 1-13-79 Floring Brook W.S. Da-#2 JOB NO. J-783 13

CKDSED DATE 4-10-79 SHEET NO. / OF C

EVALUATION

Based on available design informations, the Furnace Brook W.S. Dam # 2 appears to have been designed in accordance with present day criterion. A copy of the hydrologic disign and flood routing output is included at the back of this appendix.

The maximum spillway capacity at top of dam devetion (El 591.6)

Peak inflow of PMF for Furnece Brook Watershed - 15868 Cfc Routed peak outflow at spillway = 14363 cfs

: dam is satisfactory

BY PR DATE 2-13-79 France Brook W.S. Dant 2 JOB NO. J-783 B
CKD CKD DATE 4-10-79 SHEET NO. 3 OF 6

DRAWDOWN ANALYSIS *

1. Outlet Structure

One 80 ft long 18" a R.C.P. from upstream toe of dam to base of riser which in turn leads to the 30" a R.C.P. that draine to the impact basin downstream.

2. Outlet Capacity

Outlet capacity controlled by the 18" a section

- a. Invert at inlet = 61. 543.5 Invert at outlet (in bace of riser) = 543.75
- 1. Et. of recreation pool = Et. 579
- C. Pipe capacity based on

 Q = CpH/2 where Cp = Ap/ 29/14 Kn+KpL

Ap for 18" pipe = 1.77ft2 take n = 0.014 K, = 0.0211 (NEH Section 5, 65-42)

. Use Ka = 0.8 (Handbook of Hydrailics P. 6-18)

1 Cp = 1-77 / 1+08+0.021×80

= 7.606

: Q = 7.606 HZ

* Based on available design data, more than 80% of the flood storage can be removed within 10 days.

Therefore this analysis only considerable drawdown below the crest of the principal spillway.

BY Py DATE 2-13-75 France Brook W.S. Din 2 2 JOB NO. J-783 B

CKD DATE 4-10-79 SHEET NO. 4 0

LANGAN ENGINEERING ASSOCIATES, INC.

- Flew.	Head (ft)	Q (cfs)	Cout asq. (cfs)
579	36	45.6	44.7
576	33	43.7	42.4
572	29	41.0	39.5
468	×	38.0	36.5
564	21	34.9	33.2
160	17	31.4	29.4
176	13	27.4	24-1
552	9	22.8	

3. Storage Celocity Storage capacity below recreation poul cleration obtained from design file in SCS.

Elev.	Storage (AF)	DStorage (AF)
579	640	153
576	486.9	167
572	320	132
568	186-1	100
564	88.2	63
560	72.3	25

BY Pry DATE 2-13-71 Thenece Brok W.S. Den#2 108 NO. J-718 B

CKDOED DATE 4-10-71 SHEET NO. 5 OF

LANGAN ENGINEERING ASSOCIATES, INC.

4. Assume inflow to be 2cfs/sq.mi Qin = 2.87 x 2 = 5.7 cfs.

Fla.	a intang (ch)	Qnat(cfi)	Astorage (Ac-H)	st(er)	Eatlho	
579	44.7	39	153	47		
576 572	42-4	36.7	167	55		
568	39.5	33.8	132	47		
564	36-5	30.8 27.5	63	39 28	216	or 9 days
560						17

in we estimate that lake can be lowered 19 feet from recreation pool elevation in approx. 9 days

BY Thy DATE 2-13-79 Furnice Brook W.S. Dam#2 JOB NO. J-783 B

CKDOED DATE 4-10-79 SHEET NO. 6 OF

HYDROLOGIC DESIGN
AND
FLOOD ROUTING OUTPUT

O THE 9-KB	DURATI	RAINFALL 25.30	EMER. SPW. CREST 586.9	BO3 600. L3 230.	CFS / CFS	0 0 0	3. 3.		-	560-	1		32. 132.	35. 135.			4	3491. 4161.		1340	1934	-	54. 84154.		80	mich this one	
ESIGN AND FREEBOARD ROUTINGS.	1.20 STORM	40 FREEBOARD	2.87	500. L2 230. B	CFS.	0.	3.		-	97°			.	•		•			8543. 10643	-		28149. 35149.		57055. 71281. 75057. 93783.	3		
NIMBER 2	10	RAINFALL 10.40	DRAINAGE AREA	230. 802	STORAGE	640.	661.	682.		794.	817.	840.	847.					1210		1408				2067.			
FURNACE BROOK SITE NIMB	CURVE	EMER. SPW. RA	CASE NO. 4.	801 400. 11	ELEVATION	579.00	579.44	579.88	18.086	581-19	582.20	582.59	582.71	585.00	586.90	587.90	588.90	00.686	590.90	591.00	591.90	06.465	598.90	599.00			

.

)		2		22	1									
		2.00	291.	2552.	509.	1	0							
		1.75	.96	2864.	775.	4.	•0							
CJM 9-68		1.50	22.	3230.	1082.	10.	0							
	DRUGRAPH.	1.25	2.	3721.	1342.	18.	0		-				14.4	
NEW JERSEY	EMER. SPW. INTERVENING HYDRUGRAPH.	1.00	•0	4328.	1496.	30.	•0				. 1			
	SPW. INTE	0.75	.0	4815.	1577.	50.	o					•		
SITE NUMBER 2	EMER.	0.50	0.0	4676.	1658.	81.	•							
FURNACE BROOK		0.25	0.	3591.	1782.	131.	°							
FUR		0.00	0	2008.	.1974.	210.	.0							
		TIME	00.0	2.50	5.00 +	7.50 +	+ 00.0							

	E BROOK SITE NE					68
1	Bot. Width-	BO = 500) L =	230.		
	TIME	INFLOW	AVE IN	OUTFLOW	ELEV.	
	0.25	0.	0.	0.	578.99	
	0.50	0.	0.	0.	578.99	
	0.75	0.	0.	0.	578.99	
	1.00	0.	0.	0.	578.99	
	1.25	2.	1.	0.	579.00	
	1.50	22.	12.	0.	579.00	
	1.75	96.	59.	0.	579.03	
	2.00	291.	193.	0.	579.11	
	2.25	808.	549.	2.	579.35	
	2.50	2008.	1408.	10.	579.94	
	2.75	3591.	2800.	27.	580.92	
	3.00	4676.	4133.	103.	582.37	
	3.25	4815.	4745.	133.	583.94	
	3.50	4328.	4571.	135.	585.46	
1	3.75	3721.	4025.	137.	586.87	
-	4.00	3230.	3475.	1146.	587.90	
1	4.25	2864.	3047.	2158.	588.40	- 41.
	4.50	2552.	2708.	2451.	588.55	- Zlos
-	EAK 4.75	2242	2397.	2422.	588.54	4.
	5.00	1974.	2108.	2255.	588.45	wing
	5.50	1782. 1658.	1878.	2054.	588.35	+1111
	5.75	1577.	1720.	1876.	588.26	Morania
	6.00	1496.	1537.	1631.	588.19 588.14	"Quani Hind
	6.25	1342.	1419.	1518.	588.08	The wholen
	6.50	1082.	1212.	1356.	588.00	Water"
	6.75	175.	929.	1133.	587.89	Wasse of
	7.00	509.	642.	982.	587.74	381.6 -
	7.25	329.	419.	809.	587.57	
	7.50	210.	269.	643.	587.40	in the
	7.75	131.	170.	498.	587.26	
	8.00	81.	105.	378.	587.13	"take - le
	8.25	50.	66.	282.	587.04	
	8.50	30.	40.	208.	585.97	Lo Ilin
	8.75	18.	24.	151.	586.91	0,1
	9.00	10.	14.	137.	586.86	base -
	9.25	4.	7.	137.	586.81	
	9.50	1.	3.	137.	586.77	un confirme
	9.75	0.	0.	137.	586.72	14
	. 10.00	0.	0.	137.	586.67	will
	VOLUME CHECK		0.08 PERC	ENT.		P2-666
	COMPUTED HP	1.65				land side
						+ 1
7-						muna
1						4

0.00 0.25 0.50 0.75 11.00 11.25 11.50 11.75 2.00 10.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.25 0.50 11.00 11.25 11.50 11.75 2.00 0. 0. 10. 67. 262. 1399. 2462. 8454. 13158. 15888. 15600. 13544. 11340. 9607. 8331. 7288. 5494. 4905. 4523. 4265. 4020. 3592. 2890. 2067. 1357. 65 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		0		FRE	EBOARD INT	FREEBOARD INTERVENING HYDROGRAPH	YDROGRAPH.			C	
0. 0. 0. 10. 67. 2462. 4454. 13156. 15800. 13544. 11340. 9607. 8331. 7286. 5492. 4905. 4523. 4265. 4020. 3592. 2890. 2067. 1357. 559. 395. 217. 134. 62. 40. 26. 12. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9. 0. 0. 10. 67. 262. 8454. 13180. 15600. 13544. 11340. 9607. 8331. 7286. 5492. 4905. 4523. 4265. 4020. 3592. 2890. 2067. 1357. 559. 359. 217. 134. 82. 40. 26. 12. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0.		0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	
3454. 13156. 15886. 15600. 1354. 11340. 9607. 8331. 7288. 5492. 4905. 4523. 4265. 4020. 3592. 2890. 2067. 1357. 559. 350. 217. 134. 82. 49. 26. 12. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3454. 13156. 15886. 15600. 1354. 11340. 9607. 8331. 7288. 5492. 4905. 4523. 4265. 4020. 3592. 2890. 2067. 1357. 559. 350. 217. 134. 82. 49. 26. 12. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		.0	•	0.	10.	67.	262.	702.	1399.	2462.	77
5492. 4905. 4565. 4060. 3592. 2890. 2067. 1357. 559. 330. 217. 134. 82. 48. 26. 12. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5492. 4905. 4565. 4060. 2067. 137. 559. 356. 217. 134. 82. 48. 26. 12. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	× 05.5	8454.	13158.	15888.	15600.	13544.	11340.	. 1096	8331.	7288.	63
356. 217. 134. 82. 48. 26. 12. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.	559. 350. 217. 134. 82. 48. 26. 12. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.	\$ 00.5	5492.	4905-	4523.	4265.	4020.	3592.	2890.	2067.	1357.	1
0 0 0 0 0	0 0 0 0 0		559.	350.	.712	134.	82.	48.	26.	12.	.4	1
			9	•0	•0	•0	•0	0.	0	0	0	
					8							
		1						-				
				·								
						ł						
			19	7								
	i demon											
· date.	· blance							4.22				
								-				

STTOM WA		BO = 500	EN JERSEY	230.	CJM 9-68
		50 - 500		230.	
	TIME	INFLOW	AVE IN	OUTFLOW	ELEV.
	0.25	0.	, 0.	0.	578.99
	0.50	0.	0.	0.	579.00
	0.75	10.	5.	0.	579.00
	1.00	67.	39.	0.	579.01
	1.25	262.	165.	0.	579.09
	1.75	702.	482.	2.	579.29
	2.00	2462.	1050.	7.	579.75
	2.25	4484.	1930. 3473.	19.	580.45
	2.50	8454.	6469.	54.	581.66
	2.75	13158.	10806.	133.	583.86 587.52
	3.00	15888.	14523.	8195.	590.28
	3.25	15600.	157446	13432.	591.40
	3.50	13544.	14572	14363.	591.57
PEAK	3.75	11340.	12442.	12795.	591.29
	14.00	9607.	10474.	10926.	590.95
	4.25	8331.	8969.	9694.	590.66
	4.50	7288.	7810.	8560.	590.37 CH: 0-
	4.75	6311.	6800.	7500.	590.11 Khes Kou
	5.00	5492.	5901.	6547.	589.87 while
	5.25	4905.	5199.	5809.	589.66
	5.50	4523.	4714.	5210.	589.49 top al
	5.75	4265.	4394.	4763.	589.36
	6.00	4020.	4143.	4424.	589.26 "petted"
	6.25	3592.	3806.	4086.	589.16
	6.50	2890.	3241.	3523.	589.03 dam
	6.75	2067.	2478.	2900.	588.77 00
	7.00	1357.	1712.	2257.	588.46 Elev.
1	7.25	877.	1117.	1655.	588-15
	7.50	559.	718.	1156.	587.90 Lam ins
	7.75	350.	455.	933.	587.69
	8.00	217.	284.	. 734.	587.49 wetrally
	8.25	134.	175.	562.	587.32
	8.50	82.	108.	423.	587.18 Conto
	8.75	48.	65.	313.	587.07
	9.00	26.	37.	228.	586.99 elw. 593
	9.50	12.	19.	164.	586.92
	9.75	4.	8.	137.	586.87 To allow
	10.00	0.	2.	137.	586.82
	10.00	0.	0.	137.	586.77 for expected
VOLU	ME CHECK	AT HP 15	0-58 PERCE	NT	0 14-
COMP	UTED HP	4.67	U. JO PERLE		foundation
					and dam hi
					0.14
)					() ()
0/					(14+) 2

REFERENCES

REFERENCES FURNACE BROOK W.S. DAM #2

- 1. Chow, Ven Te, Ph.D, Open Channel Hydraulics, McGraw-Hill Book Company, 1959.
- 2. Eby, C.F., 1976 Soil Survey of Morris County, New Jersey, U.S. Department of Agriculture, Soil Conservation Service, 111 pp.
- 3. United States Dept. of Agriculture, Soil Conservation Service SCS National Engineering Handbood Section 4 Hydrology NEH-Notice 4-102, August 1972.
- 4. United States Dept. of Agriculture, Soil Conservation Service, Somerset, N.J. Urban Hydrology for Small Watersheds, Technical Release No. 55, January 1975.
- 5. United States Dept. of Commerce Weather Bureau, April 1956 Hydrometeorological Report No. 33, Washington, D.C.
- 6. United States Dept. of Interior, Bureau of Reclamation Design of Small Dams, Second Edition 1973, Revised Print 1977.
- 7. Widmer, K., 1964, The Geology and Geography of New Jersey, Volume 19, The New Jersey Historical Series, D. Van Nostrand Co., Inc. Princeton, New Jersey, 193 pp.
- 8. Wolfe, P.E., 1977, The Geology and Landscapes of New Jersey, Crane, Russak & Company, Inc., New York, New York, 351 pp.
- 9. Design Report, U.S. Dept. of Agriculture, Soil Conservation Service, 6 pages, date unknown.
- 10. Soil Mechanics Laboratory Report, U.S. Department of Agriculture, Soil Conservation Service, dated 19 December 1969
- 11. Logs of Drill Holes and Test Pits, 18 pages, date unknown.
- 12. Detailed Geologic Investigation of Furnace Brook Site, 11pages, United States
 Dept. of Agriculture, Soil Conservation Service, Somerset, N.J. dated unknown.
- 13. Operation and Maintenance Agreement for Structural Measures, U.S. Dept. of Agriculture, Soil Conservation Service, dated 30 October 1968.

DWG.	DWG. TITLE	<u>BY</u>	DATE
1.	Cover Sheet	U.S. Dept. of Agriculture Soil Conservation Service	As Built
2.	Dam Site & Pool Area	Son Conservation Service	1-72
3.	Plan of Dam	·	
4.	Profile of Dam	н	•
5.	Embankment & Aux. Spillway Details		"
6.	Cutoff Trench Details	n	
7.	Drainage Details	n .	•
8.	Principal Spillway		•
9.	Spillway & Structure Excavation	n	•
10.	Conduit Details	"	
11.	Pond Drain Conduit Details		
12. 8	k 12A Riser Structural Details		
13			
14.			•
15.	Riser Details		•
16.	Riser Accessories	•	
17.	Impact Basin Details	•	
18.	Reservoir Drain Inlet Details		
19.	Relief Well Details	/ •	
20.	Misc. Details		
21.	Location Drill Hole & Test Pits		